Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical performances of rock-like disc containing circular inclusion subjected to diametral compression

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
This paper presents a numerical investigation of cracking behaviour of rock-like disc containing one circular inclusion subjected to diametral compression, which is validated by physical tests in terms of the crack patterns and stress–strain responses. The numerical results indicate that if the inclusion strength is higher or close to the matrix strength, one dominated crack can form to split the disc into two parts. Otherwise, the crack branches can be observed besides the dominated crack. The inclusion eccentricity has important influences on the crack pattern of the rock disc. If the inclusion strength is lower than the matrix strength, the horizontal eccentricity can induce to a horizontal crack. The length of the horizontal crack is close related to the eccentricity that a higher eccentricity can lead to a longer horizontal crack. The vertical eccentricity can result in crack branch, which becomes shorter as the eccentricity increases. If the inclusion strength is higher than the matrix, the horizontal and vertical eccentricity cannot lead to crack branches and only one dominated crack can be observed. The disc nominal strength increases by increasing the horizontal or vertical eccentricity both for cases of the inclusion strength lower and greater than the matrix.
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
  • Opening Laboratory for Deep Mine Construction, Henan Polytechnic University, Jiaozuo, China
  • School of Civil Engineering, Henan Polytechnic University, Jiaozuo, China
  • School of Civil Engineering, Henan Polytechnic University, Jiaozuo, China
  • Opening Laboratory for Deep Mine Construction, Henan Polytechnic University, Jiaozuo, China
  • Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian, China
  • [1] Z.W. Gao, Y.H. Zhou, K.Y. Lee, Crack-inclusion problem for a long rectangular slab of superconductor under an electromagnetic force, Comput. Mater. Sci. 2010 (502) (2010) 279–282.
  • [2] R.K. Choubey, S. Kumar, M.C. Rao, Modeling of fracture parameters for crack propagation in recycled aggregate concrete, Constr. Build. Mater. 106 (2016) 168–178.
  • [3] A. Eidelman, Z. Reches, Fractured pebbles – a new stress indicator, Geology 20 (1992) 307–310.
  • [4] S.Q. Yang, T.X.L. He, H.W. Jing, S. Wen, Q.L. Yu, Numerical study on failure behavior of brittle rock specimen containing pre-existing combined flaws under different confining pressure, Arch. Civil Mech. Eng. 15 (2015) 1085–1097.
  • [5] A.K. Maji, S.P. Shah, Mixed mode fracture in compression, in: L. Elfgren, S.P. Shah (Eds.), Analysis of Concrete Structure by Fracture Mechanics, Chapman and Hall, New York, 1990 55– 68.
  • [6] T.B. Aulia, Strain localization and fracture energy of high strength concrete under uniaxial compression, Lacer 5 (2000) 221–240.
  • [7] R.P. Janeiro, H.H. Einstein, Experimental study of the cracking behavior of specimens containing inclusions (under uniaxial compression), Intern. J. Fract. 164 (2010) 83–102.
  • [8] A. Sidorova, E.V. Ramonich, M.B. Bizinotto, J.J.R. Rovira, E.J. Pique, Study of the recycled aggregates natures influence on the aggregate-cement paste interface and ITZ, Constr. Build. Mater. 68 (2014) 677–684.
  • [9] J.N. Goodier, Concentration of stress around spherical and cylindrical inclusions and flaws, J. Appl. Mech. 1 (1993) 39–44.
  • [10] E.G. Bombolakis, Photoelastic Stress Analysis of Crack Propagation Within a Compressive Stress Field, Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, 1963.
  • [11] M.A. Tasdemir, A.K. Maji, S.P. Shah, Crack propagation in concrete under compression, J. Mech. Eng. 116 (5) (1989) 1058– 1076.
  • [12] N. Mandal, C. Chakraborty, S.K. Samanta, An analysis of anisotropy of rocks containing shape fabrics of rigid inclusions, J. Struct. Geol. 22 (2000) 831–839.
  • [13] C.V. Nielsen, B.N. Legarth, C.F. Niordson, Extended FEM modeling of crack paths near inclusions, Int. J. Numer. Methods Eng. 89 (2012) 786–804.
  • [14] Z. Wu, L.N.Y. Wong, Modeling cracking behavior of rock mass containing inclusions using the enriched numerical manifold method, Eng. Geol. 162 (2013) 1–13.
  • [15] C.A. Tang, Numerical simulation of progressive rock failure and associated seismicity, Int. J. Rock Mech. Min. Sci. 34 (1997) 249–261.
  • [16] C.A. Tang, Z.Z. Liang, Y.B. Zhang, X. Chang, Fracture spacing in layered materials: a new explanation based on two-dimensional failure process modeling, Am. J. Sci. 308 (2008) 49–72.
  • [17] D.Q. Dan, H. Konietzky, Numerical simulations and interpretations of Brazilian tensile tests on transversely isotropic rocks, Int. J. Rock Mech. Min. Sci. 71 (2014) 53–63.
  • [18] D.Q. Dan, H. Konietzky, Brazilian tensile strength tests on some anisotropic rocks, Int. J. Rock Mech. Min. Sci. 58 (2013) 1–7.
  • [19] M. Mellor, I. Hawkes, Measurement of tensile strength by diametral compression of discs and annuli, Eng. Geol. 5 (1971) 173–225.
  • [20] N. Erarslan, D.J. Williams, Experimental, numerical and analytical studies on tensile strength of rocks, Int. J. Rock Mech. Min. Sci. 49 (2012) 21–30.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.