PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of the properties of polymer composites with carbon nanotubes in the aspect of their abrasive wear

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Carbon nanotubes are used in composite materials due to the improvement of (including tribological) properties of composites, especially thermoplastic matrix composites. This demonstrates the potential of CNTs and the validity of research on determining the impact of this type of reinforcement on the composite materials under development. Design/methodology/approach: The article presents selected results of research on polymer composites made of C.E.S. R70 resin, C.E.S. H72 hardener with the addition of a physical friction modifier (CNTs) with a percentage by volume of 18.16% and 24.42%, respectively, which also acts as a reinforcement. The produced material was subjected to hardness measurements according to the Shore method and EDS analysis. The study of abrasive wear in reciprocating movement was carried out using the Taber Linear Abraser model 5750 tribotester and a precision weight. The surface topography of the composite material after tribological tests was determined using scanning electron microscopy (SEM). Some of the mentioned tests were carried out on samples made only of resin, used as the matrix of the tested polymer composite. Findings: Carbon nanotubes used in polymer matrix composites, including bisphenol A/F epoxy resin have an influence on the tribological properties of the material. The addition of carbon nanotubes contributed to a 24% increase in the Ra parameter relative to pure resin, to a level corresponding to rough grinding of steel. Research limitations/implications: The results of the tests indicate the need to continue research in order to optimize the composition of composites in terms of operating parameters of friction nodes in broadly understood aviation. Originality/value: The analysed literature did not find any studies on the impact of the addition of carbon nanotubes on epoxy resins based on bisphenol A/F. Due to the wide scope of application of such resins, the properties of such composite materials in which carbon nanotubes are the reinforcing phase have been investigated.
Rocznik
Strony
5--12
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Airframe and Engine, Faculty of Aeronautics, Military University of Aviation, ul. Dywizjonu 303 35, 08-521 Dęblin, Poland, a.krzyzak@law.mil.pl
autor
  • Department of Production Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  • Department of Airframe and Engine, Faculty of Aeronautics, Military University of Aviation, ul. Dywizjonu 303 35, 08-521 Dęblin, Poland
autor
  • Centre for Materials Research, Motor Transport Institute, ul. Jagiellońska Street 80, 03-301 Warsaw, Poland
Bibliografia
  • [1] J. Bieniaś, P. Jakubczak, K. Majerski, M. Ostapiuk, B. Surowska, Methods of ultrasonic testing, as an effective way of estimating durability and diagnosing operational capability of composite laminates used in aerospace industry, Eksploatacja i Niezawodność - Maintenance and Reliability 15/3 (2013) 284-289.
  • [2] R. Bielawski, Research and Modeling of Thread Connections in Composite Structural Structures, PhD Thesis, Warsaw University of Technology, Warsaw, 2016 (in Polish).
  • [3] G. Asmoro, E. Surojo, D. Ariawan, N. Muhayat, W. Raharjo, Effect of ZnS on Frictional Behaviour of Composite Friction Brake, AIP Conference Proceedings 2097/1 (2019) 2234-2240, DOI: https://doi.org/10.1063/1.5098213.
  • [4] K. Dziedzic, M. Pashechko, M. Borsch, J. Józwik, Structure and Construction Assessment of the Surface Layer of Hardfaced Coating After Friction, Advances in Science and Technology Research Journal 11/3 (2017) 253-260, DOI: https://doi.org/10.12913/22998624/76583.
  • [5] D. Vališ, K. Hasilová, Z. Vintr, A. Krzyżak, Nonparametric reliability assessment of composite items, safety and reliability - theory and applications, Proceedings of the 27th European Safety and Reliability Conference “ESREL 2017”, Portoroz, 2017, 665-671.
  • [6] A. Krzyżak, M. Mucha, D. Pindych, D. Racinowski, Analysis of Abrasive Wear of Selected Aircraft Materials in Various Abrasion Conditions, Journal of KONES 25/4 (2018) 217-222, DOI: https://doi.org/10.5604/01.3001.0012.4794.
  • [7] S. Porras, M. Mucha, Electrical Properties Study of Fibre Reinforced Polymeric Materials Used in Aircraft Structures, Journal of KONES 25/4 (2018) 347-353, DOI: https://doi.org/10.5604/01.3001.0012.4809.
  • [8] D. Dzianok, P. Postawa, The Use of Modern Composite Materials in Industry, Przetwórstwo Tworzyw - Polymer Processing 21/5 (2015) 389-398 (in Polish).
  • [9] A. Komorek, P. Przybyłek, D. Brzozowski, The Influence of UV Radiation Upon the Properties of Fibre Reinforced Polymers, Solid State Phenomena 223 (2015) 27-34, DOI: https://doi.org/10.4028/www.scientific.net/SSP.223.27.
  • [10] A. Krzyżak, G. Bemowski, R. Szczepaniak, N. Grzesik, L. Gil, Evaluation of the Reliability of Composite Materials Used in Aviation, Safety and Reliability - Safe Societies in a Changing World, Proceedings of the 28th International European Safety and Reliability Conference “ESREL 2018”, Trondheim, 2018, 2093-2098.
  • [11] Z. Tong, X. Li, Q. Ma, M. Tangjie, G. Dong, Synergism of Hollow MoS2 Nano–Particles and WS2 Micro-Particles on Improving the Tribological Properties of Carbon Fiber Fabric Reinforced Phenolic-Based Composites, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 233/7 (2019) 1107-1116, DOI: https://doi.org/10.1177/1350650118823884.
  • [12] T.P. Mohan, K. Kanny, Tribological Studies of Nanoclay Filled Epoxy Hybrid Laminates, Tribology Transactions 60/4 (2017) 681-692, DOI: https://doi.org/10.1080/10402004.2016.1204039.
  • [13] Q.L. Ji, M.Q. Zhang, M.Z. Rong, B. Wetzel, K. Friedrich, Tribological Properties of Surface Modified Nano-Alumina/Epoxy Composites, Journal of Materials Science 39/21 (2004) 6487-6493, DOI: https://doi.org/10.1023/B:JMSC.0000044887.27884.1e.
  • [14] S. Basavarajappa, S. Ellangovan, Dry Sliding Wear Characteristics of Glass-Epoxy Composite Filled With Silicon Carbide and Graphite Particles, Wear 296/1-2 (2012) 491-496, DOI: https://doi.org/10.1016/j.wear.2012.08.001.
  • [15] M. Hebda, A. Wachal, Tribology, WNT, Warsaw, 1980 (in Polish).
  • [16] B. Wetzel, F. Haupert, K. Friedrich, M.Q. Zhang, M.Z. Rong, Impact and Wear Resistance of Polymer Nanocomposites at Low Filler Content, Polymer Engineering and Science 42/9 (2002) 1919-1927, DOI: https://doi.org/10.1002/pen.11084.
  • [17] G. Shi, M. Q. Zhang, M. Z. Rong, B. Wetzel, K. Friedrich, Friction and Wear of Low Nanometer Si3N4 Filled Epoxy Composites, Wear 254/7-8 (2003) 784-796, DOI: https://doi.org/10.1016/S0043-1648(03)00190-X.
  • [18] X.-J. Shen, X.-Q. Pei, S.-Y. Fu, Significantly modified tribological performance of epoxy nanocomposites at very low graphene oxide content, Polymer 54/3 (2013) 1234-1242, DOI: https://doi.org/10.1016/j.polymer.2012.12.064.
  • [19] W. Zhai, N. Srikanth, L.B. Kong, K. Zhou, Carbon Nanomaterials in Tribology, Carbon 119 (2017) 150171, DOI: https://doi.org/10.1016/j.carbon.2017.04.027.
  • [20] G. Qianming, L. Dan, L. Zhi, Y. Xiao-Su, L. Ji, Chapter 10 - Tribology Properties of Carbon Nanotube-Reinforced Composites, in: K. Friedrich, A.K. Schlarb (Eds.), Tribology and Interface Engineering Series, Vol. 55, 2008, 245-267, DOI: https://doi.org/10.1016/S1572-3364(08)55010-5.
  • [21] C.B. Lin, Z.-C. Chang, Y.H. Tung, Y.-Y. Ko, Manufacturing and Tribological Properties of Copper Matrix/Carbon Nanotubes Composites, Wear 270/5-6 (2011) 382-394, DOI: https://doi.org/10.1016/j.wear.2010.11.010.
  • [22] J. Song, H. Lei, G. Zhao, Improved Mechanical and Tribological Properties of Polytetrafluoroethylene Reinforced by Carbon Nanotubes: A Molecular Dynamics Study, Computational Materials Science 168 (2019) 131-136, DOI: https://doi.org/10.1016/j.commatsci.2019.05.058.
  • [23] J. Song, Y. Yu, G. Zhao, J. Qiu, Q. Ding, Improved Tribological Properties of Polyimide Composites by Micro-Nano Reinforcement, Journal of Applied Polymer Science 136/35 (2019) 47900, DOI: https://doi.org/10.1002/app.47900.
  • [24] H. Cai, F. Yan, Q. Xue, Investigation of Tribological Properties of Polyimide/Carbon Nanotube Nanocomposites, Materials Science and Engineering A 364/1-2 (2004) 94-100, DOI: https://doi.org/10.1016/S0921-5093(03)00669-5.
  • [25] W.X. Chen, F. Li, G. Han, J.B. Xi, L.Y. Wang, J.P. Tu, Z.D. Xu, Tribological Behavior of Carbon-Nanotube-Filled PTFE Composites, Tribology Letters 15/3 (2003) 275-278, DOI: https://doi.org/10.1023/A:1024869305259.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-775b2908-c40e-4675-bc24-ec62a5594ed2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.