PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Theoretical research response time of the mechanism for compression ratio changing of the conrod-free engine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The mathematical model for calculating the response time of the compression ratio of the mechanism for compression ratio changing (MCRC) is presented in this article. This revealed the influence of various engine factors with the connecting rod and crank mechanism (CRCM) on the operation of the MCRC (for example, the rate of the compression ratio change). The results of the study of the operation of the MCRC indicate a strong influence of the values  (relative area of flow passage of channels) and р (pressure) on the response time τ in the field of their small values. This indicates that with insignificant changes of the area of flow passage of channel of the hydraulic lock and the minute oil pressure in the cavities, a significant response rate of the MCRC is ensured. The results demonstrate the possibility of speedy compression ratio change in the engine with the MCRC. Calculation studies showed that the mechanism full operation occurs quickly (0.02 s per unit εx), which indicates the expediency of using such a high-pressure pump in a four-stroke gasoline engine with CRCM. The mechanism movable body complete movement (S = 4 mm) at the oil temperature in the hydraulic system of 45°C and pressure on the body of p = 60 bar are stated to occur for 0.2 s.
Rocznik
Tom
Strony
69--83
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
  • Faculty of Mechanics, Prydniprovs’ka State Academy of Civil Engineering and Architecture, 24A Chernyshevsky Street, 49600, Dnipro, Ukraine, tnk1403@ukr.net
  • Faculty of Mechanics, Prydniprovs’ka State Academy of Civil Engineering and Architecture, 24A Chernyshevsky Street, 49600, Dnipro, Ukraine, tnk1403@ukr.net
autor
  • Faculty of Mechanics, Prydniprovs’ka State Academy of Civil Engineering and Architecture, 24A Chernyshevsky Street, 49600, Dnipro, Ukraine, sakno-olga@ukr.net
  • Faculty of Mechanics, Prydniprovs’ka State Academy of Civil Engineering and Architecture, 24A Chernyshevsky Street, 49600, Dnipro, Ukraine, sakno-olga@ukr.net
  • Department of Motor Vehicles, National Transport University, 1 Mykhailа Omelianovycha-Pavlenka Street, 01010, Kyiv, Ukraine, galina_gaj@ukr.net
  • Vehicles Faculty, Department of Internal Combustion Engine, Kharkiv National Automobile and Highway University, 25 Yaroslava Mudrogo Street, Kharkiv, Ukraine, 61002, igor.nikitchenko@gmail.com
  • State Enterprise “State Road Transport Research Institute”, 57 Peremohy Ave, Kyiv, 03113, Ukraine, agorpinuk@insat.org.ua
  • State Enterprise “State Road Transport Research Institute”, 57 Peremohy Ave, Kyiv, 03113, Ukraine, nnazarenko@insat.org.ua
Bibliografia
  • 1. Mickevicius T., S. Slavinskas, S. Wierzbicki, K. Duda. 2014. „The effect of diesel-biodiesel blends on the performance and exhaust emissions of a direct injection off-road diesel engine”. Transport 29(4): 440-448.
  • 2. Mikulski M., S. Wierzbicki, M. Smieja, J. Matijosius. 2015. „Effect of CNG in a fuel dose on the combustion process of a compression-ignition engine”. Transport 30(2): 162-171.
  • 3. Puškár M., M. Fabian, T. Tomko. 2018. „Application of multidimensional statistical model for evaluation of measured data obtained from testing of the HCCI engine prototype”. Diagnostyka 19(1): 19-24. DOI: http://dx.doi.org/10.29354/diag/78349.
  • 4. Booto Gaylord Kabongo, Giuseppe Marinelli, Helge Brattebo¸ Andre Bohne. 2019. “Reducing fuel consumption and emissions through optimization of the vertical alignment of a road: A case study of a heavy-duty truck on the Norwegian Highway Route E39”. European Transport/Trasporti Europei 71 (paper 4): 1-33.
  • 5. Hemisha Makan, Gert J. Heyns. 2018. “Sustainable supply chain initiatives in reducing greenhouse gas emission within the road freight industry”. Journal of Transport and Supply Chain Management 12(a365): 1-10. DOI: https://doi.org/10.4102/jtscm.v12i0.365.
  • 6. Jacyna M., M. Wasiak, K. Lewczuk, G. Karoń. 2017. "Noise and environmental pollution from transport: decisive problems in developing ecologically efficient transport systems". Journal of Vibroengineering 19: 5639-5655. DOI: doi.org/10.21595/jve.2017.19371.
  • 7. Gopal G., L. Suresh Kumar, K. Vijaya Bahskar Reddy, M. Uma Maheshwara Rao, G. Srinivasulue. 2017. „Analysis of Piston, Connecting rod and Crank shaft assembly”. Materials Today: Proceedings 4(8): 7810-7819. DOI: https://doi.org/10.1016/j.matpr.2017.07.116.
  • 8. Islam M.A., K. Heimann, R. J. Browna. 2017. „Microalgae biodiesel: Current status and future needs for engine performance and emissions”. Renewable and Sustainable Energy Reviews 79: 1160-1170. DOI: https://doi.org/10.1016/j.rser.2017.05.041.
  • 9. Rimkevičienė J., V. Ostaševičius, V. Jūrėnas, R. Gaidys. 2009. „Experiments and simulations of ultrasonically assisted turning tool”. Mechanika 1: 42-46.
  • 10. Ubartas M., V. Ostaševičius, S. Samper, V. Jūrėnas, R. Daukševičius. 2011. „Experimental investigation of vibrational drilling”. Mechanika 4: 368-373.
  • 11. Zhang S., C. Zhao, Z. Zhao, D. Yafei, F. Ma. 2015. „Simulation study of hydraulic differential drive free-piston engine”. SAE Technical Paper 2015-01-1300. DOI: https://doi.org/10.4271/2015-01-1300.
  • 12. Czech P. 2012. “Determination of the course of pressure in an internal combustion engine cylinder with the use of vibration effects and radial basis function - preliminary research”. TELEMATICS IN THE TRANSPORT ENVIRONMENT. Edited by: Mikulski J. Book Series: Communications in Computer and Information Science. Vol.: 329. P. 175-182. Conference: 12th International Conference on Transport Systems Telematics, Katowice Ustron, Poland, Oct 10-13, 2012.
  • 13. Czech P. 2011. “Diagnosing of disturbances in the ignition system by vibroacoustic signals and radial basis function - preliminary research”. MODERN TRANSPORT TELEMATICS. Edited by: Mikulski J. Book Series: Communications in Computer and Information Science. Vol.: 239. P. 110-117. Conference: 11th International Conference on Transport Systems Telematics, Katowice Ustron, Poland, Oct 19-22, 2011.
  • 14. Krajňák J., J. Homišin, R. Grega, M. Urbanský. 2016. “The analysis of the impact of vibrations on noisiness of the mechanical system”. Diagnostyka 17(3): 21-26. ISSN 1641-6414.
  • 15. Sága M., L. Jakubovičová. 2014. “Computational analysis of contact stress distribution in the case of mutual stewing of roller bearing rings”. Applied Mechanics and Materials 474: 363-368.
  • 16. Urbanský M., J. Homišin, P. Kaššay, J. Krajňák. 2018. “Measurement of air springs volume using indirect method in the design of selected pneumatic devices”. Acta Mechanica et Automatica 12(1): 19-22. ISSN 1898-4088.
  • 17. Haag J., F. Kock, M. Chiodi, O. Mack, M. Bargende, C. Naumann, N. Slavinskaya, A. Heron, U. Riedel, C. Ferrari. 2013. „Development approach for the investigation of homogeneous charge compression ignition in a free-piston engine”. SAE Technical Paper 2013-24-0047. DOI: https://doi.org/10.4271/2013-24-0047.
  • 18. Reis V.L., G.B. Daniel, K.L. Cavalca. 2014. „Dynamic analysis of a lubricated planar slider-crank mechanism considering friction and Hertz contact effects”. Mechanism and Machine Theory 74: 257-273. DOI: https://doi.org/10.1016/j.mechmachtheory.2013.11.009.
  • 19. Xu Z.P., S.Q. Chang. 2013. „Simulation of an opposed-piston four-stroke free-piston generator”. Applied Mechanics and Materials 336-338: 585-589. DOI: https://doi.org/10.4028/www.scientific.net/amm.336-338.585.
  • 20. Yan H., D. Wang, Z. Xu. 2015. „Design and simulation of opposed-piston four-stroke free-piston linear generator”. SAE Technical Paper 2015-01-1277. DOI: https://doi.org/10.4271/2015-01-1277.
  • 21. Zhu X., J. Xu, Y. Liu, B. Cen, X. Lu, Z. Zeng. 2017. „Failure analysis of a failed connecting rod cap and connecting bolts of a reciprocating compressor”. Engineering Failure Analysis 74: 218-227. DOI: https://doi.org/10.1016/j.engfailanal.2017.01.016.
  • 22. Kojima S., S. Kiga, K. Moteki, E. Takahashi, K. Matsuoka. 2018. “Development of a New 2L Gasoline VC-Turbo Engine with the World’s First Variable Compression Ratio Technology”. SAE Technical Paper 2018-01-0371. DOI: 10.4271/2018-01-0371.
  • 23. Zhang S., Z. Zhao, C. Zhao, F. Zhang, Y. Liu. 2016. “Design approach and dimensionless analysis of a differential driving hydraulic free piston engine”. SAE Technical Paper 2016-01-8091. DOI: 10.4271/2016-01-8091.
  • 24. US4013048: F02B 75/28. Bourke type engine. Reitz D.M. (USA). 22.03.1977.
  • 25. Yuan S. 2010. “Compression stroke characteristics of single piston hydraulic free-piston engine”. Journal of Mechanical Engineering 46(18): 134. DOI: 10.3901/jme.2010.18.134.
  • 26. UA106090C2. Crank-less engine with link mechanism (variants). Krasnikov A.V., Vetrova O.A., Vetrov E.A. Ukraine. 25.07.2014.
  • 27. RU2476700C2. Con-rod-free ice, device to convert reciprocation into rotation and vice versa. Fedorov V.F. Russia. 27.02.2013.
  • 28. Edwards J. 1983. “Ceramics and the swing beam 2 stroke diesel for the automotive engine”. SAE Technical Paper 830315: 47-54. DOI: 10.4271/830315.
  • 29. Kolchin A.I., V.P. Demidov. 1980. Расчет автомобильных и тракторных двигателей. [In Russian: Calculation of automobile and tractor engines]. Moscow: High School. ISBN 978-5-06-003828-6.
  • 30. Geyer V.G., V.S. Dulin, A.G. Borumensky, A.N. Zarya. 1981. Гидравлика и гидропривод. [In Russian: Hydraulics and hydrodrive]. Moscow: Nedra. ISBN 5-247-01007-8.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7647c9fa-0cd1-41a1-8309-e3a6ed4ba39d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.