PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of propagation of modelling un-certainty by the procedures for determining maximum dynamic errors

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Ocena propagacji niepewności modelowania przez procedury wyznaczania maksymalnych błędów dynamicznych
Języki publikacji
EN
Abstrakty
EN
The paper discusses the method for modelling linear analogue systems of the second order in the time domain. As a result of such modelling, the parameters of the model and the associated uncertainties are obtained. Procedures for determining the absolute error and the integral-square error are presented. These procedures make it possible to determine precisely such an input signal with one constraint that maximizes an error at the output of the system. Values of the parameters of an example model are determined and the propagation of the uncertainties of modelling results is assessed by the procedures for determining the maximum dynamic errors. The results of calculations presented in the paper were carried out in MathCad15.
PL
W artykule omówiono metodę modelowania w dziedzinie czasu liniowych systemów analogowych drugiego rzędu. Jako wynik takiego modelowania uzyskano parametry modelu oraz związane z nimi niepewności. Przedstawiono procedury wyznaczania maksymalnych błędów dynamicznych dla przypadku kryteriów błędu: bezwzględnego i całkowokwadratowego. Procedury te pozwalają w sposób precyzyjny określić taki sygnał wejściowego z jednym ograniczeniem, który maksymalizuje błąd na wyjściu systemu. Wyznaczono wartości parametrów przykładowego modelu oraz oceniono propagację niepewności wyników modelowania przez procedury wyznaczania maksymalnych błędów dynamicznych. Wyniki obliczeń przedstawionych w artykule przeprowadzono w programie MathCad15.
Rocznik
Strony
157--169
Opis fizyczny
Bibliogr. 20 poz., wz., wykr., tab.
Twórcy
autor
  • Department of Automatic Control and Information Technology, Faculty of Electrical and Computer Engineering, Cracow University of Technology
autor
  • Department of Automatic Control and Information Technology, Faculty of Electrical and Computer Engineering, Cracow University of Technology
Bibliografia
  • [1] Kollar I., On Frequency-Domain Identification of Linear Systems, IEEE Transactions on Instrumentation and Measurement, Vol. 42, Issue 1, 1993, 2–6.
  • [2] Ljung L., Some results on identifying linear systems using frequency domain data, Proc. 32nd. IEEE Conf. Decis. Control, San Antonio, 1993, 3534–3538.
  • [3] Guillaume P., Frequency Response Measurements of Multivariable Systems using Nonlinear Averaging Techniques, IEEE Transactions on Instrumentation and Measurement, Vol. 47, Issue 3, 1998, 796–800.
  • [4] Pintelon R., Schoukens J., System identification: A Frequency Domain Approach, IEEE Press, Piscataway, New York 2001.
  • [5] Isermann R., Münchhof M., Identification of Dynamic Systems, Springer-Verlag, Berlin Heidelberg, Dordrecht, London, New York 2010.
  • [6] Tomczyk K., Sieja M., Parametric Identification of System Model for the Charge Output Accelerometer, Technical Transactions 2-E/2015, 235–245.
  • [7] BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and OIML, Evaluation of measurement data – Supplement 1 to the “Guide to the expression of uncertainty in measurement” – Propagation of distributions using a Monte Carlo method, 2008.
  • [8] Assambo C., Determination of the Parameters of the Skin-Electrode Impedance Model for ECG Measurement. Proceedings of the 6-th WSEAS Int. Conf. on Electronics. Hardware, Wireless and Optical Communications, 2007, 90–95.
  • [9] Tomczyk K., Procedure for Correction of the ECG Signal Error Introduced by Skin-Electrode Interface, Metrology and Measurement Systems, Vol. XVIII, No. 3, 2011, 461–470.
  • [10] Rutland N.K., The Principle of Matching: Practical Conditions for Systems with Inputs Restricted in Magnitude and Rate of Change, IEEE Transaction on Automatic Control, Vol. 39, 1994, 550–553.
  • [11] Layer E., Non-standard Input Signals for the Calibration and Optimisation of the Measuring Systems, Measurement, Vol. 34, 2003, 179–186.
  • [12] Layer E., Tomczyk K., Measurements. Modelling and Simulation of Dynamic Systems, Springer-Verlag. Berlin Heidelberg, 2010.
  • [13] Layer E., Tomczyk K., Determination of Non-Standard Input Signal Maximizing the Absolute Error. Metrology and Measurement Systems, Vol. 17, 2009, 199–208.
  • [14] Tomczyk K., Impact of Uncertainties in Accelerometer Modelling on the Maximum Values of Absolute Dynamic Error. Measurement, Vol. 49, 2016, 71–78.
  • [15] BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and OIML 2011. Supplement 2 to the Guide to the Expression of Uncertainty in Measurement, Extension to any number of output quantities JCGM 102:2011.
  • [16] Kubisa S., Intuicja i symulacja Monte Carlo Podstawa Analizy Niedokładnosci Pomiarow, PAK, No. 9, 2007, 3–8.
  • [17] Wyner A.,, Spectra of Bounded Functions in Open Problems in Communication and Computation, T.M. Cover and B. Gopinath, Eds. Springer Verlag, New York 1987, 46–48.
  • [18] Honig M.L., Steiglitz K., Maximizing the Output Energy of a Linear Channel with a Time and Amplitude Limited Input, IEEE Transaction on Information Theory, Vol. 38, No. 3, 1992, 1041–1052.
  • [19] NI 622x Specifications, National Instruments, ref. 372190G-01, jun. 2007
  • [20] http://www.ni.com/datasheet/pdf/en/ds-15
Uwagi
EN
Section "Electrical Engineering"
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-75a0a547-1a90-4626-b0f8-25bfc54bc972
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.