Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of low-frequency sound field in rooms with complex-valued boundary conditions on walls

Treść / Zawartość
Warianty tytułu
Języki publikacji
A modal representation of a room impulse response has been used to formulate expressions for low-frequency sound field in rooms of arbitrary shape. Based on theoretical results, a simulation program has been developed to predict a sound pressure distribution and a room transfer function for rectangular enclosure having walls covered by a material of complex impedance. Calculation results have shown that changes in the wall reactance entail a substantial modification of a sound pressure distribution. Furthermore, an influence of wall reactance on the room transfer function was investigated and it was discovered that a change in a reactance sign causes a shift in frequencies of modal vibrations excited in the room.
Opis fizyczny
Bibliogr. 15 poz., wykr.
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland,
  • 1. V. Valeau, J. Picaut, M. Hodgson, On the use of a diffusion equation for room-acoustic prediction, Journal of the Acoustical Society of America, 119(3) (2006) 1504 - 1513.
  • 2. J. Summers, R. Torres, Y. Shimizu, B. Dalenbäck, Adapting a randomized beamaxis-tracing algorithm to modeling of coupled rooms via late-part ray tracing, Journal of the Acoustical Society of America, 118(3) (2005) 1491 - 1502.
  • 3. S. Laine, S. Siltanen, T. Lokki, L. Savioja, Accelerated beam tracing algorithm, Applied Acoustics, 70(1) (2009) 172 - 181.
  • 4. M. Aretz, P. Dietrich, M. Vorländer, Application of the mirror source method for low frequency sound prediction in rectangular rooms, Acta Acustica united with Acustica, 100(2) (2014) 306 - 319.
  • 5. T. Okuzono, T. Otsuru, R. Tomiku, N. Okamoto, A finite-element method using dispersion reduced spline elements for room acoustics simulation, Applied Acoustics, 79 (2014) 1 - 8.
  • 6. T. Sakuma, Y. Yasuda, Fast multipole boundary element method for large-scale steady-state sound field analysis. Part I: setup and validation, Acta Acustica united with Acustica, 88(4) (2002) 513 - 525.
  • 7. D. Murphy, A. Southern, L. Savioja, Source excitation strategies for obtaining impulse responses in finite difference time domain room acoustics simulation, Applied Acoustics, 82 (2014) 6 - 14.
  • 8. S. Dance, G. Van Buuren, Effects of damping on the low-frequency acoustics of listening rooms based on an analytical model, Journal of Sound and Vibration, 332(25) (2013) 6891 - 6904.
  • 9. K. Sum, J. Pan, Geometrical perturbation of an inclined wall on decay times of acoustic modes in a trapezoidal cavity with an impedance surface, Journal of the Acoustical Society of America, 120(6) (2006) 3730 - 3743.
  • 10. M. Meissner, Computer modelling of coupled spaces: variations of eigenmodes frequency due to a change in coupling area, Archives of Acoustics, 34(2) (2009) 157 - 168.
  • 11. M. Meissner, Spectral characteristics and localization of modes in acoustically coupled enclosures, Acta Acustica united with Acustica, 95(2) (2009) 300 - 305.
  • 12. H. Kuttruff, Room acoustics, 5th ed., Spon Press, New York, 2009.
  • 13. M. Meissner, Acoustic energy density distribution and sound intensity vector field inside coupled spaces, Journal of the Acoustical Society of America, 132(1) (2012) 228 - 238.
  • 14. M. Meissner, Prediction of reverberant properties of enclosures via a method employing a modal representation of the room impulse response, Archives of Acoustics, 41(1) (2016) 27 - 41.
  • 15. S. Damelin, W. Miller, The mathematics of signal processing, Cambridge University Press, New York, 2012.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.