Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-753b9a7f-9202-4fe5-b127-37477f8ca53e

Czasopismo

Archives of Metallurgy and Materials

Tytuł artykułu

Influence of Magnetic Field on Electroless Metallization of 3D Prints by Copper and Nickel

Autorzy Kołczyk-Siedlecka, K.  Skibińska, K.  Kutyła, D.  Kwiecińska, A.  Kowalik, R.  Żabiński, P. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN 3D printing is a technology with possibilities related to the production of elements of any geometry, directly from a digital project. Elements made of plastic are metalized to give new properties such as conductivity or corrosion resistance. In this work, experimental work related to the electroless deposition of metallic coatings on plastics was carried out. For this purpose, the copper and nickel coatings were catalytically deposited on elements printed using hard-lightened resin. The effect of the metallization time on the properties of copper and nickel coatings was determined. In addition, the process of deposition metals in the magnetic field was analyzed with different direction of magnetic field to the surface of the samples. The coatings were analyzed by XRF, XRD method and morphology of surface was observed by scanning electron microscopy (SEM).
Słowa kluczowe
EN 3D print   metallization   magnetic field   roughness  
Wydawca Polish Academy of Sciences, Committee of Metallurgy, Institute of Metallurgy and Materials Science
Czasopismo Archives of Metallurgy and Materials
Rocznik 2019
Tom Vol. 64, iss. 1
Strony 17--22
Opis fizyczny Bibliogr. 23 poz., fot., rys.
Twórcy
autor Kołczyk-Siedlecka, K.
  • AGH University of Science and Technology in Krakow, Faculty of Non-Ferrous Metals, Mickiewicza 30, 30-059 Kraków, Poland, kkolczyk@agh.edu.pl
autor Skibińska, K.
  • AGH University of Science and Technology in Krakow, Faculty of Non-Ferrous Metals, Mickiewicza 30, 30-059 Kraków, Poland
autor Kutyła, D.
  • AGH University of Science and Technology in Krakow, Faculty of Non-Ferrous Metals, Mickiewicza 30, 30-059 Kraków, Poland
autor Kwiecińska, A.
  • AGH University of Science and Technology in Krakow, Faculty of Non-Ferrous Metals, Mickiewicza 30, 30-059 Kraków, Poland
autor Kowalik, R.
  • AGH University of Science and Technology in Krakow, Faculty of Non-Ferrous Metals, Mickiewicza 30, 30-059 Kraków, Poland
autor Żabiński, P.
  • AGH University of Science and Technology in Krakow, Faculty of Non-Ferrous Metals, Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
[1] M. Luty-Błocho, M. Wojnicki, K. Pacławski, K. Fitzner, The synthesis of platinum nanoparticles and their deposition on the active carbon fibers in one microreactor cycle. Chemical Engineering Journal Journal 226, 46-51 (2013).
[2] J. Sudagar, J. Lian, W. Sha, Electroless nickel, alloy, composite and nano coatings–A critical review. Journal of Alloys and Compounds Journal 571, 183-204 (2013).
[3] M. Wojnicki, M. Luty-Błocho, J. Grzonka, K. Pacławski, K. J. Kurzydłowski, K. Fitzner, Micro-continuous flow synthesis of gold nanoparticles and integrated deposition on suspended sheets of graphene oxide. Chemical Engineering Journal 225, 597-606 (2013).
[4] Equbal, N. K. Dixit, A. K. Sood. Electroless Plating on Plastic, International Journal of Scientific & Engineering Research 4 (8) (2013).
[5] T. Sharma, R. Brüning, T.C.L. Nguyen, T. Bernhard, F. Brüning, Properties of electroless Cu films optimized for horizontal plating as a function of deposit thickness, Microelectronic Engineering 140, 38-46 (2015).
[6] Islam, H. N. Hansen, P. T. Tang, Direct electroplating of plastic for advanced electrical applications, CIRP Annals - Manufacturing Technology 66 (1), 209-212 (2017).
[7] J. R. Miller, Perspective on electrochemical capacitor energy storage, Applied Surface Science 460, 3-7 (2017).
[8] M. Godec, D. Mandrino, M. Gaberšček, Investigation of performance degradation in metallized film capacitors, Applied Surface Science 273, 465-471 (2013).
[9] R. Bernasconi, C. Credi, M. Tironi, M. Levi, L. Magagnin, Electroless Metallization of Stereolithographic Photocurable Resins for 3D Printing of Functional Microdevices, Journal of The Electrochemical Society 164 (5), B3059-B3066 (2017).
[10] R. Bernasconi, F. Cuneo, E. Carrara, G. Chatzipirpiridis, M. Hoop, X. Chen, B. J. Nelson, S. Pane, C. Credi, M. Levi, L. Magagnin, Hard-magnetic cell microscaffolds from electroless coated 3D printed architectures. Materials Horizons 5 (4), 699-707 (2018).
[11] Q. Yan, H. Dong, J. Su, J. Han, B. Song, Q. Wei, Y. Shi, A Review of 3D Printing Technology for Medical Applications, Engineering 4 729-742 (2018).
[12] S. N. Economidou, D. A. Lamprou, D. Douroumis, 3D printing applications for transdermal drug delivery, International Journal of Pharmaceutics 544 (2), 415-424 (2018).
[13] Z. Liu, M. Zhang, B. Bhandari, Y. Wang, 3D printing: Printing precision and application in food sector, Trends in Food Science & Technology 69, 83-94 (2017).
[14] C. Zhao, C. Wang, R. Gorkin, S. Beirne, K. Shu, G. G. Wallace, Three dimensional (3D) printed electrodes for interdigitated supercapacitors, Electrochemistry Communications Journal 41, 20-23 (2014).
[15] C. Zhu, T. Liu, F. Qian, W. Chen, S. Chandrasekaran, B. Yao, Y. Song, E. B. Duoss, J. D. Kuntzm C. M. Spadaccini, M. A. Worsley, Y. Li, 3D printed functional nanomaterials for electrochemical energy storage, Nano Today 15, 107-120 (2017).
[16] F. Zhang, M. Wei, V. V. Viswanathan, B. Swart, Y. Shao, G. Wu, C. Zhou. 3D printing technologies for electrochemical energy storage, Nano Energy 40, 418-431 (2017).
[17] U. Kalsoom, P. N. Nesterenko, B. Paull. Current and future impact of 3D printing on the separation sciences. Trends in Analytical Chemistry 105, 492-502 (2018).
[18] Kaewvilai, R. Tanathakorn, A. Laobuthee, W. Rattanasakulthong, A. Rodchanarowan. Electroless copper plating on nano-silver activated glass substrate: A single-step activation. Surface and Coatings Technology 319, 260-266 (2017).
[19] N. Kulyk, S. Cherevko, C. H. Chung, Copper electroless plating in weakly alkaline electrolytes using DMAB as a reducing agent for metallization on polymer films, Electrochimica Acta 59, 179-185 (2012).
[20] L. M. Luo, Z. L. Lu, X. M. Huang, X. Y. Tan, X. Y. Ding, J. G. Cheng, L. Zhu, Y. C. Wu, Electroless copper plating on PC engineering plastic with a novel palladium-free surface activation process, Surface & Coatings Technology 251, 69-73 (2014).
[21] D. Kutyła, K. Kołczyk, R. Kowalik, P. Zabiński, Modification of Mo-Se layers electrochemically synthesized in a strong magnetic field, Magnetohydrodynamics 53 (2), 299-307 (2017).
[22] R. Kowalik, K. Mech, D. Kutyla, T. Tokarski, P. Zabinski, Magnetic field effect on electrodeposition of cobalt dendrites, Magnetohydrodynamics 51 (2), 345-351 (2012).
[23] S. Shetty A. C. Hegde, Magnetically Induced Electrodeposition of Ni-Mo Alloy for Hydrogen Evolution Reaction, Electrocatalysis 8 (3), 179-188 (2017).
Uwagi
EN 1. The financial support from Faculty of Non-Ferrous Metals under grant number 15.11.180.968/2018 is gratefully acknowledged.
PL 2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-753b9a7f-9202-4fe5-b127-37477f8ca53e
Identyfikatory
DOI 10.24425/amm.2019.126212