Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-7460e400-61b4-494a-9cef-89e2b283cf54

Czasopismo

Archives of Metallurgy and Materials

Tytuł artykułu

Microstructural, Corrosion and Abrasive Characteristics of Titanium Matrix Composites

Autorzy Figiel, P.  Garbiec, D.  Biedunkiewicz, A.  Biedunkiewicz, W.  Kochmański, P.  Wróbel, R. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Commercially pure titanium is less expensive, generally more corrosion resistant and lower in strength than its alloys, and is not heat-treatable. The use of Ti and its alloys as construction materials under severe friction and wear conditions is limited due to their poor tribological properties. Nevertheless, proper addition of hard ceramic particles into Ti and its alloys has proved to be an efficient way to enhance their mechanical and wear properties. Our purpose in this work was to analyze the corrosion, tribocorrosion, mechanical and morphological effects of combining titanium carbide with titanium metal, to create a unique composite via spark plasma sintering technique (SPS). Composites with different mass percentage (1, 5, 10, 15 and 20 wt %) of ceramic phase were produced. The samples of pure Ti and Ti-6Al-4V alloy were also tested, as a reference. These composites were examined for mechanical properties and corrosion resistance in an environment similar to the human body (Ringer’s solution). Open circuit potential (OPC) and anodic polarization measurements were performed. The properties of titanium composites reinforced with micro- and nanocrystalline TiC powders were compared. It was stated that wear properties were significantly improved with increasing amount of TiC in matrix, especially in the case of nanocrystalline reinforcement. In terms of corrosion resistance, the composites showed slightly worse properties compared to pure titanium and Ti-6Al-4V alloy.
Słowa kluczowe
EN titanium matrix composite   SPS   corrosion resistance   sliding wear  
Wydawca Polish Academy of Sciences, Committee of Metallurgy, Institute of Metallurgy and Materials Science
Czasopismo Archives of Metallurgy and Materials
Rocznik 2018
Tom Vol. 63, iss. 4
Strony 2051--2059
Opis fizyczny Bibliogr. 28 poz., fot., rys., tab., wykr.
Twórcy
autor Figiel, P.
  • West Pomeranian University of Technology, Faculty of Mechanical Engineering and Mechatronics, Institute of Materials Science and Engineering, 19 Piastów Av. 70-310 Szczecin, Poland, pfigiel@zut.edu.pl
autor Garbiec, D.
  • Metal Forming Institute, 14 Jana Pawła II Str., 61-139 Poznań, Poland
autor Biedunkiewicz, A.
  • West Pomeranian University of Technology, Faculty of Mechanical Engineering and Mechatronics, Institute of Materials Science and Engineering, 19 Piastów Av. 70-310 Szczecin, Poland
autor Biedunkiewicz, W.
  • West Pomeranian University of Technology, Faculty of Mechanical Engineering and Mechatronics, Institute of Manufacturing Engineering, Piastów Av. 19, 70-310 Szczecin, Poland
autor Kochmański, P.
  • West Pomeranian University of Technology, Faculty of Mechanical Engineering and Mechatronics, Institute of Materials Science and Engineering, 19 Piastów Av. 70-310 Szczecin, Poland
autor Wróbel, R.
  • West Pomeranian University of Technology, Faculty of Chemical Technology and Engineering, Institute of Chemical Technology and Environment Engineering, 10 Pułaskiego Av., 70-322 Szczecin, Poland
Bibliografia
[1] http://c.ymcdn.com/sites/www.titanium.org/resource/resmgr/Docs/TiUltimate.pdf, accessed: 03.04.2018r.
[2] Y. S. Tian, C. Z. Chen, L. B. Chen, J. H. Liu, T. Q. Lei, J. Mater. Sci. 40, 4387-4390 (2005).
[3] Marc Long, H.J. Rack, Wear 249, 157-167 (2001).
[4] S. Fouvry, C. Paulin, S. Deyber, Tribol. Int. 42, 461-474 (2009).
[5] D. E. Alman, J. A. Hawk, Wear 225-229, 629-639 (1999).
[6] H. O. Gülsoy, V. Gunay, T. Baykara, Powder Metall. 58 (1), 30-35 (2015).
[7] A. A. M. da Silva, A. Meyer, J. F. dos Santos, C. E. F. Kwietniewski, T. R. Strohaecker, Compos. Sci. Technol. 64, 1495-1501 (2004).
[8] C. Poletti, M. Balog, T. Schubert, V. Liedtke, C. Edtmaier, Compos. Sci. Technol. 68 (9), 2171-2177 (2008).
[9] N. Takahashi, T. Sato, S. Nakatsuka, K. Fujiwara, K. Yokozekii, Titanium metal matrix composite development for commercial aircraft landing gear structure, Proceedings of 28th International Congress of The Aeronautical Sciences 2012, Brisbane, Australia, (2012).
[10] L. Cai, Y. Zhang, L. Shi, H. Yang, M. Xi, J. Univ. Sci. Technol. Beijing Miner. Metall. Mater. (Eng Ed), 13 (6), 551-557 (2006).
[11] K. Van Acker, D. Vanhoyweghen, R. Persoons, J. Vangrunderbeek, Wear 258 (1-4), 194-202 (2005).
[12] D. T. Cavanaugh, Graduate Theses and Dissertations, Evaluation of titanium carbide metal matrix composites deposited via laser cladding, Iowa State University, Ames, USA (2015).
[13] Y. L. Qin, L Geng, D. R. Ni, J. Compos. Mater. 46 (21), 2637-2645 (2012).
[14] K. Mizuuchi, K. Inoue, M. Sugioka, M. Itami, M. Kawahara, I. Yamauchi, Mater. Sci. Eng. A 428, 175-179 (2006).
[15] J. E. Oghenevweta, D. Wexler, A. Calka, J. Alloys Compd. 701, 380-391 (2017).
[16] M. J. Bermingham, D. Kent, H. Zhan, D. H. StJohn, M. S. Dargusch, Acta Mater. 91, 289-303 (2015).
[17] S. Roy, S. Suwas, S. Tamirisakandala, D. B. Miracle, R. Srinivasan, Acta Mater. 59, 5494-5510 (2011).
[18] M. Sherif El-Eskandarany (Ed.), Mechanical Alloying: Nanotechnology, Materials Science and Powder Metallurgy, Wiliam Andrew Publishing, Oxford (2015)
[19] R. Chaudhari, R. Bauri, Metallogr. Microstruct. Anal. 3, 30-35 (2014).
[20] A. Biedunkiewicz, J. Sol-Gel. Sci. Technol. 59, 448-455 (2011).
[21] http://www.specs.de/cms/upload/PDFs/ApplNotes/Focus_500/ANote_xps_Ti_Al_V.pdf accessed 24.04.2018
[22] http://www.xpsfitting.com/2008/09/aluminum.html, accessed 25.04.2018
[23] D. E. MacDonald, B. E. Rapuano, H. C. Schniepp, Colloids Surf., B 82 (1), 173-181 (2011).
[24] D. Kuscer, J. Kovač, M. Kosec, R. Andriesen, J. Eur. Ceram. Soc. 28, 577-584 (2008).
[25] M. C. Biesinger, L.W.M. Lau, A. R. Gerson, R.S.C Smart, Appl. Surf. Sci. 257, 887-898 (2010).
[26] M. Magnuson, E. Lewin, L. Hultman, U. Jansson, Phys. Rev. B 80, 235108 (2009).
[27] R. J. Wróbel, S. Becker, Vacuum 84, 1258-1265 (2010).
[28] A. Gęsikiewicz-Puchalska, M. Zgrzebnicki, B. Michalkiewicz, U. Narkiewicz, A. W. Morawski, R. J. Wróbel, Chem. Eng. J. 309, 159-171 (2017).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-7460e400-61b4-494a-9cef-89e2b283cf54
Identyfikatory
DOI 10.24425/amm.2018.125142