Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Novel Method for Dynamic Pressure and Velocity Measurement Related to a Power Cartridge Using a Velocity Test Rig for Water-Jet Disruptor Applications

Treść / Zawartość
Warianty tytułu
Języki publikacji
Power cartridges are gas generators utilised to drive a liquid projectile for disruption of suspect improvised explosive devices (IED’s). The purpose of a water-jet disruptor is to destroy the suspected IED. A novel method was devised for pressure measurement at the exit of the cartridge for launching liquid projectile. An experimental test set-up was designed and fabricated for measurement of projectile velocity and the propellant gas pressure in a velocity test rig (VTR). In these experiments, double base propellants having different physical and chemical properties were utilised to drive the solid projectile. This projectile was made of nylon material. This projectile velocity measurement is an important parameter in the armament field. An experimental study is the unique design feature. It is responsible for the measurement of pressure at the exit of the cartridge and the projectile velocity at the muzzle end of the barrel. The projectile velocity was measured using high speed photography. The pressure was measured using a pressure sensor. The maximum projectile velocities for spherical ball powder and NGB 051 propellants have been experimentally measured as 384.23 m/s and 418.32 m/s, respectively. Experimentally the maximum pressures for spherical ball powder and NGB 051 propellants have been evaluated as 50.12 MPa and 63 MPa respectively from data gathered by the acquisition system. The standard deviation between the experimental and theoretical values for the projectile velocity varied from 12.57 to 13.88 for spherical ball powder whereas it was 5.33 to 7.09 for NGB 051 propellant. The percentage error between the experimental and the theoretical values of the projectile velocity was less than 10 for both propellants.
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
  • Armament Research & Development Institute (ARDE), Pune – 411 021, India
  • Armament Research & Development Institute (ARDE), Pune – 411 021, India
  • Defence Institute of Advanced Technology (DIAT), Khadakwasla Dam, Girinagr, Pune – 411 025, India
  • High Energy Material Research Laboratory (HEMRL), Pune – 411 021, India
  • [1] Kog, S.; Ali Ak, M.; Vural, H. Characterization of Power Cartridges, an Experimental and Numerical Approach. American Institute of Aeronautics and Astronautics, 1999, 35th Journal of Propulsion conference and exhibit, AIAA-99-2421, 1-6.
  • [2] Agrawal, J.P. High Energy Materials. Propellant, Explosives and Pyrotechnics. Wiley-VCH. Verlag GmbH & Co. KGaA, Weinheim, Ch. 4, pp. 228, 2010; ISBN: 978-3-527-32610-5.
  • [3] Kubota, N. Propellant and Explosives: Thermochemical Aspects of Combustion. Wiley-VCH. Verlag GmbH & Co. KGaA, Weinheim, 2002; ISBNs: 3-527-60050-7 (Electronics).
  • [4] Beckstead, M.W.; Puduppakkam, K.; Thakre, P.; Yang, V. Modelling of Combustion and Ignition of Solid Propellant Ingredients. Prog. Energy Combustion Sci. 2007, 33(6): 497-551.
  • [5] Folly, P.; Mädera, P. Propellant Chemistry. Chimia 2004, 58(6): 374-382.
  • [6] Venkatachalam, S.; Santhosh, G.; Ninan, K.N. Introduction to Explosives and Propellants. High Energy Oxidisers for Advanced Solid Propellants and Explosives. Advances in Solid Propellant Technology, 1st International HEMSI, Workshop, Ranchi, India, 2002, 87-106.
  • [7] Apatoff, J.B.; Norwitz, G. Role of Diphenylamine as a Stabilizer in Propellants; Analytical Chemistry of Diphenylamine in Propellants (a Survey Report), 1973, Test Report T73-12-1.
  • [8] Akhavan, J. The Chemistry of Explosives. 2nd edition, publisher The Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge CB4 OWF, UK, 2004; ISBN: 0-85404-640-2.
  • [9] Norwitz, G.; Galan, M. Determination of Carbon Black and Graphite in Nitrocellulose - Base Propellant. US Army, Frankford arsenal, 1965, Philadelphia, PA.
  • [10] Dan, Z.; Lu, S.; Gong, L.-L.; Cao, Ch.-Y.; Zhang, H.-P. Effects of Calcium Carbonate on Thermal Characteristics, Reaction Kinetics and Combustion Behaviors of 5AT/ Sr(NO3)2 Propellant. Energy Conversion and Management 2016, 109: 94-102.
  • [11] Elkarous, L.; Coghe1, F.; Pirlot, M.; Golinval, J.C. Experimental Techniques for Ballistic Pressure Measurements and Recent Development in Means of Calibration. J. Phys., Conference Series 459, 012048, 2013, 1-12.
  • [12] Frank, M.; Philipp, K.P.; Franke, E.; Frank, N.; Bockholdt, B.; Grossjohann, R.; Ekkernkamp, A. Dynamic Pressure Measurement of Cartridge Operated Vole Captive Bolt Devices. Forensic Sci. Int. 2009, 183(1-3): 54-59.
  • [13] Closed Vessel RB Series; Measurement of Ballistic Parameters of Gun Propellant. Information Materials of OZM Research s. r. o., Czech Republic.
  • [14] Divekar, C.N.; Vruushali, K.; Mahore, B.; Gore, G.M.; Chakraborthy, T.K.; Singh, A. Studies on Web Size Variation of Double Base Gun Propellants on Closed Vessel (CV) Results. 8th International High Energy Materials Conference and Exhibit, 2011.
  • [15] Engineering Design Handbook, Guns- General. AMCP 706-250, 1964.
  • [16] Corner, J. Theory of the Interior Ballistics of Guns. John Wiley and Sons, New York, 1950.
  • [17] Hunt, F.R.W. Internal Ballistics. Philosophical Library, Inc., New York, 1951.
  • [18] Bhaskara Rao, K.S. Art in Internal Ballistics. Def. Sci. J. 1982, 132(2): 157-174.
  • [19] Cattin, R. In-bore Measurement of Projectile Velocity with LASER Doppler Interferometer. Armament Technology and Procurement Group, Switzerland, 1-5.
  • [20] Bauer, D.P.; Barber, J.P. In-bore rail gun projectile velocity. IEEE Transactions on Magnetics 1986, 22(6): 1395-1398.
  • [21] Measurement of Projectile Velocity. STANAG 4114, 1997.
  • [22] Sloan, M.L. Measurement of Rail Gun Velocities by Shorted Transmission Line Techniques. IEEE Transactions on Magnetics 1986, 22(6): 1746.
  • [23] Boulkadid, K.M.; Lefebvre, M.H.; Jeunieau, L.; Dejeaifve, A. Mechanical and Ballistic Properties of Spherical Single Base Gun Propellant. Cent. Eur. J. Energ. Mater. 2017, 14(1): 90-104.
  • [24] Boulkadid, K.M.; Lefebvre, M.H.; Jeunieau, L.; Dejeaifve, A. Local Temperature Sensitivity Coefficients of Deterred Spherical Single Base Gun Propellant. Cent. Eur. J. Energ. Mater. 2017, 14(4): 952-965.
  • [25] Joint Services Specification on Double Base Propellants. JSS: 1376-12 Directorate of Standardisation, New Delhi, 2003.
  • [26] Rozumov, E. Recent Advances in Gun Propellant Development: From Molecules to Materials. In: Energetic Materials. From Cradle to Grave (Shukla, M.; Boddu, M.; Steevens, J.A.; Damavarapu, R.; Leszczynski, J., Eds.) 2017, 25, pp. 23-65; ISBN: 978-3-319-59206-0.
  • [27] Kumar, D.S. Fluid Mechanics and Fluid Power Engineering. Publication S.K. Kataria and Sons, New Delhi, 2015, Chapter 5, pp. 224-227; ISBN-13: 978-93-5014-392-6.
  • [28] Parate, B.A.; Chandel, S.; Shekhar, H. An Experimental and Numerical Approach − Characterisation of Power Cartridge for Water-jet Application. Defence Technology 2018, 14: 683-690.
  • [29] The Closed Vessel Ballistic Assessment of Gun Propellants. Min. of Defence, Defence Standard UK Def-Stan 13-191/1, 1996.
  • [30] Meysmans, R.; Vannieste, L. Propellant for Small Arms – Closed Vessel Determination of Ballistic Parameters Influence of the Vessel Size at the Same Loading Density. Ballistics, Proc. Int. Symp., 9th, Shrivenham, 1986, 187-196.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.