PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of XBeach to model a storm response on a sandy spit at the southern Baltica

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The process-based XBeach model has been used to simulate changes in beach and dune morphology in terms of influence of the significant storm event on the sandy Dziwnow Spit, located in the western part of the Polish coast. The research was carried out as part of the SatBałtyk project and represents the first stage of XBeach model application to create a system for recording the selected effects and hazards caused by current and expected storm events. The significant storm event, registered in 2009, was used for model calibration. Ten cross-shore profiles were selected and compared against preand post-storm morphological data. Model performance was verified on the basis of BSS values for the terrestrial part of the profiles. Verification of the results was performed using two different approaches: on the basis of the highest mean BSS value for all profiles together and for one set of parameters (approach no. 1) and on the basis of the highest BSS value for each profile and most adequate sets of parameters (approach no. 2). Additionally, the observed and modelled beach and dune volume changes were calculated. The research showed that the XBeach model is well capable of simulating the dune and beach erosion caused by the storm event, but the model requires site-specific calibration. High sensitivity of the XBeach model to the facua parameter was determined; the parameter defines the wave shape and affects the sediment transport. The best fit of the profiles was obtained for BSS, ranging between 0.71 and 0.93, with the parameter hmin = 0.01 or 0.05, facua = 0.2-0.5, wetslp = 0.2-0.4 and dryslp = 1 or 1.5. The volume estimation error ranged from +0.6 m3 m-1 to -7.7 m3 m-1, which represents 2.7% to 31.6%.
Rocznik
Strony
552--562
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Marine and Coastal Sciences, University of Szczecin, ul. Mickiewicza 18, 70-383 Szczecin, Poland
  • Institute of Marine and Coastal Sciences, University of Szczecin, ul. Mickiewicza 18, 70-383 Szczecin, Poland
Bibliografia
  • [1]. Bolle, A., Mercelis, P. & Roelvink, D. & Haerens, P. & Trouw, K. (2011). Application and validation of XBeach for three different field sites. Coastal Engineering 32: 1811-1823. D0I:10.9753/icce.v32.sediment.40.
  • [2]. Bugajny, N., Furmańczyk, K. & Dudzińska-Nowak, J. & Paplińska-Swerpel, B. (2013). Modelling morphological changes of beach and dune induced by storm on the Southern Baltic coast using XBeach (case study: Dziwnow Spit). Journal of Coastal Research 65: 672-677. DOI: 10.2112/ SI65-114.1.
  • [3]. Cieślikiewicz, W. & Paplińska-Swerpel, B. (2008). A 44- year hindcast of wind wave fields over the Baltic Sea. Coastal Engineering 55(11): 894-905. DOI:10.1016/j. coastaleng.2008.02.017.
  • [4]. Dobracki, R. & Zachowicz, J. (2005). Mapa Geodynamiczna Polskiej Strefy Brzegowej Bałtyku. Szczecin: Państwowy Instytut Geologiczny Oddział Pomorski, skala 1:10 000, 2 arkusze, (in Polish).
  • [5]. Dubrawski, R. (Eds.) (2008). Elementy monitoringu morfodynamicznego polskich brzegów morskich. Gdańsk: Zakład Wydawnictw Naukowych Instytutu Morskiego w Gdańsku (in Polish).
  • [6]. Dudzińska-Nowak, J. (2006). Coastline long-term changes of the selected area of the Pomeranian Bay. In A. Tubielewicz (Eds.), Coastal Dynamic, Geomorphology and Protection, (pp. 163-170). Gdańsk: Gdańsk University of Technology.
  • [7]. Dudzińska-Nowak, J. (2015). Metody ochrony zachodniego wybrzeża Polski i ich wpływ na zmiany brzegu w latach 1938-2011. Szczecin: Wydawnictwo Uniwersytetu Szczecińskiego. (in Polish with Engl. summ.).
  • [8]. Furmańczyk, K. & Dudzińska-Nowak, J. (2009). Effects of extreme storms on coastline changes: a southern Baltic example. Journal of Coastal Research 56: 1637-1640.
  • [9]. Furmańczyk, K. K., Dudzińska-Nowak, J. & Furmańczyk, K. A. & Paplińska-Swerpel, B. & Brzezowska, N. (2012). Critical storm thresholds for the generation of significant dune erosion at Dziwnow Spit. Geomorphology 143-144: 62-68. D0I:10.1016/j.geomorph.2011.09.007.
  • [10]. Harley, M., Armaroli, C. & Ciavola, P. (2011). Evaluation of XBeach predictions for a real-time warning system in Emilia-Romagna, Northern Italy. Journal of Coastal Research 64: 1861-1865.
  • [11]. Kriebel, D.L. & Dean, R.G. (1985). Numerical simulation of time-dependent beach and dune erosion. Coastal Engineering 9: 221-245.
  • [12]. Larson, M & Kraus, N. (1989). SBEACH: Numerical Model for Simulating Storm-induced Beach Change, Report 1, Empirical Foundation and Model Development. Vicksburg, Mississippi: Coastal Engineering Research Center. (TR CERC-89-9).
  • [13]. Paplińska, B. (2001). Specific features of sea waves in the Pomeranian Bay. Archives of Hydro-Engineering and Environmental Mechanics 48(2): 55-72.
  • [14]. Pender, A. & Karunarathna, H. (2013). A statistical- process based approach for modelling beach profile variability. Coastal Engineering 81: 19-29. D0I:10.1016/j.
  • [15]. coastaleng.2013.06.006.
  • [16]. Racinowski, R. & Seul, C. (1999). Brzeg i podbrzeże Mierzei Dziwnowskiej. In R.K. Borówka, Z. Młynarczyk & A. Wojciechowski (Eds.), Ewolucja geosystemów nadmorskich południowego Bałtyku (pp. 115-120). Poznań-Szczecin: Bogucki Wydawnictwo Naukowe (in Polish).
  • [17]. Roelvink, D., Reniers, A. & van Dongeren, A. & van Thiel de Vries, J. & McCall, R. & Lescinski, J. (2009). Modelling storm impacts on beaches, dune and barrier islands. Coastal Engineering 56(11-12): 1133-1152. D0I:10.1016/j. coastaleng.2009.08.006.
  • [18]. Roelvink, D., Reniers, A. & van Dongeren, A. & van Thiel de Vries, J. & Lescinski, J. & McCall, R. (2010). XBeach Model Description and Manual. Unesco-IHE Institute for Water Education, Deltares and Delft University of Technology. (1200116/1002266).
  • [19]. Ruiz de Alegria-Arzaburu, A., Williams, J.J. & Masselink, G. (2011). Application of XBeach to model storm response on a macrotidal gravel barrier. Coastal Engineering 32: 1796¬1810. DOI:10.9753/icce.v32.sediment.39.
  • [20]. Sallenger, A.H., Jr. (2000). Storm impact scale for barrier islands. Journal of Coastal Research 16(3): 890-895.
  • [21]. Steetzel, H.J. (1993). Cross-shore transport during storm surges. Zwolle. CASPARIE.
  • [22]. Splinter, K. & Palmsten, M. L. (2012). Modeling dune response to an East Coast Low. Marine Geology 329-332: 46-57. D0I:10.1016/j.margeo.2012.09.005.
  • [23]. van Rijn, L.C., Walastra, D.J.R. & Grasmeijer, B. & Sutherland, J. & Pan, S. & Sierra, J.P. (2003). The predictability of cross-shore bed evolution of sandy beaches at the time scale of storms and seasons using process-based profile models. Coastal Engineering 37(3): 295-327. D0I:10.1016/S0378- 3839(02)00120-5.
  • [24]. van Thiel de Vries, J.S.M. (2009). Dune erosion during storm surges. The Netherlands: IOS Press.
  • [25]. Vousdoukas, M.I., Almeida, L.P. & Ferreira, Ó. (2011). Modelling storm-induced beach morphological change in a meso-tidal reflective beach using XBeach. Journal of Coastal Research 64: 1916-1920.
  • [26]. WAMDI Group. (1988). The WAM model-a third generation ocean wave prediction model. Journal of Physical Oceanography 18: 1775-1810.
  • [27]. Woźniak, B., Bradtke, K. & Darecki, M. & Dera, J. & Dudzińska-Nowak, J. & Dzierzbicka-Głowacka, L. & Ficek, D. & Furmańczyk, K. & Kowalewski, M. & Krężel, & Majchrowski, R. & Ostrowska, M. & Paszkuta, M. & Stoń-Egiert, J. & Stramska, M. & Zapadka, T. (2011). SatBałtyk - A Baltic environmental satellite remote sensing system - an ongoing project in Poland. Part 2: Practical applicability and preliminary results. Oceanologia 53(4):1-34. DOI:10.5697/oc.53-3.691.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-71c4840d-0c35-49a6-8136-756e1eef4af8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.