PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Regional ionosphere modeling in support of IRI and wavelet using GPS observations

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Dual-frequency global navigation satellite systems (GNSS) observations provide most of the input data for development of global ionosphere map (GIM) of vertical total electron content (VTEC). The international GNSS service (IGS) develops different ionosphere products. The IGS tracking network stations are not homogeneously distributed around the world. The large gaps of this network in Middle East, e.g., Iran plateau, reduce the accuracy of the IGS GIMs over this region. Empirical ionosphere models, such as international reference ionosphere (IRI), also provide coarse forecasts of the VTEC values. This paper presents a new regional VTEC model based on the IRI 2007 and global positioning system (GPS) observations from Iranian Permanent GPS Network. The model consists of a given reference part from IRI model and an unknown correction term. Compactly supported base functions are more appropriate than spherical harmonics in regional ionosphere modeling. Therefore, an unknown correction term was expanded in terms of B-spline functions. The obtained results are validated through comparison with the observed VTEC derived from GPS observations.
Czasopismo
Rocznik
Strony
1246--1261
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
  • Faculty of Geodesy and Geomatics Engineering, K.N. Toosi University of Technology, Tehran, Iran
autor
  • Faculty of Geodesy and Geomatics Engineering, K.N. Toosi University of Technology, Tehran, Iran
  • Faculty of Geodesy and Geomatics Engineering, K.N. Toosi University of Technology, Tehran, Iran
Bibliografia
  • 1. Bilitza, D., and B.W. Reinisch (2008), International Reference Ionosphere 2007: Improvements and new parameters, Adv. Space Res. 42,4, 599–609, DOI: 10.1016/j.asr.2007.07.048.
  • 2. Boggess, A., and F.J. Narcowich (2009), A First Course in Wavelets with Fourier Analysis, 2nd ed., John Wiley & Sons, Hoboken, 315 pp.
  • 3. Chui, C.K., and E. Quak (1992), Wavelets on a bounded interval. In: D. Braess and L.L. Schumaker (eds.), Numerical Methods of Approximation Theory, Vol. 9, International Series of Numerical Mathematics 105, Birkhauser Verlag, Basel, 53–75, DOI: 10.1007/978-3-0348-8619-2_4.
  • 4. Ciraolo, L., F. Azpilicueta, C. Brunini, A. Meza, and S.M. Radicella (2007), Calibration errors on experimental slant total electron content (TEC) determined with GPS, J. Geod. 81,2, 111–120, DOI: 10.1007/s00190-006-0093-1.
  • 5. Dach, R., U. Hugentobler, P. Fridez, and M. Meindl (eds.) (2007), Bernese GPS Software Version 5.0, Astronomical Institute, University of Bern, Bern, Switzerland.
  • 6. Gao, Y., P. Heroux, and J. Kouba (1994), Estimation of GPS receiver and satellite L1/L2 signal delay biases using data from CACS. In: Proc. KIS-94, 30 August–2 September 1994, Banff, Canada, 109–117.
  • 7. Hansen, P.C. (1990), The discrete Picard condition for discrete ill-posed problems, BIT 30,4, 658–672, DOI: 10.1007/BF01933214.
  • 8. Hansen, P.C. (1994), Regularization tools: a Matlab package for analysis and solution of discrete ill-posed problems, Numer. Algorithms 6,1, 1–35, DOI: 10.1007/BF02149761.
  • 9. Hansen, P.C. (1997), Rank-deficient and Discrete Ill-posed Problems. Numerical Aspects of Linear Inversion, Monographs on Mathematical Modeling and computation, Vol. 4, SIAM, Philadelphia.
  • 10. Hernández-Pajares, M., J.M. Juan, and J. Sanz (1999), New approaches in global ionospheric determination using ground GPS data, J. Atmos. Sol.-Terr. Phys. 61,16, 1237–1247, DOI: 10.1016/S1364-6826 (99)00054-1.
  • 11. Hernández-Pajares, M., J.M. Juan, J. Sanz, R. Orus, A. García-Rigo, J. Feltens, A. Komjathy, S.C. Schaer, and A. Krankowski (2009), The IGS VTEC maps: a reliable source of ionospheric information since 1998, J. Geod. 83,3–4, 263–275, DOI: 10.1007/s00190-008-0266-1.
  • 12. Hossainali, M.M. (2006), A comprehensive approach to the analysis of the 3Dkinematics of deformation, Ph.D. Thesis, Institute of Physical Geodesy, Darmstadt University of Technology, Darmstadt, Germany, 152 pp.
  • 13. Keller, W. (2004), Wavelets in Geodesy and Geodynamics, Walter de Gruyter GmbH & Co. KG, Berlin.
  • 14. Liu, Z., and Y. Gao (2003), Ionospheric TEC predictions over a local area GPS reference network, GPS Solut. 8,1, 23–29, DOI: 10.1007/s10291-004-0082-x.
  • 15. Lyche, T., and L.L. Schumaker (2000), A multiresolution tensor spline method for fitting functions on the sphere, SIAM J. Sci. Comput. 22,2, 724–746, DOI: 10.1137/S1064827598344388.
  • 16. Mautz, R., J. Ping, K. Heki, B. Schaffrin, C. Shum, and L. Potts (2005), Efficient spatial and temporal representations of global ionosphere maps over Japan using B-spline wavelets, J. Geod. 78,11–12, 660–667, DOI: 10.1007/s00190-004-0432-z.
  • 17. Nohutcu, M., M.O. Karslioglu, and M. Schmidt (2010), B-spline modeling of VTEC over Turkey using GPS observations, J. Atmos. Sol.-Terr. Phys. 72,7–8, 617–624, DOI: 10.1016/j.jastp.2010.02.022.
  • 18. Paige, C.C., and M.A. Saunders (1982), LSQR: an algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Softw. 8,1, 43–71, DOI: 10.1145/355984.355989.
  • 19. Quak, E., and N. Weyrich (1994), Decomposition and reconstruction algorithms for spline wavelets on a bounded interval, Appl. Comput. Harmon. Anal. 1,3, 217–231, DOI: 10.1006/acha.1994.1009.
  • 20. Schaer, S. (1999), Mapping and predicting the Earth’s ionosphere using the Global Positioning System, Ph.D. Thesis, Astronomical Institute, University of Bern, Bern, Switzerland.
  • 21. Schmidt, M. (2007), Wavelet modeling in support of IRI, Adv. Space Res. 39,5, 932–940, DOI: 10.1016/j.asr.2006.09.030.
  • 22. Schmidt, M., D. Bilitza, C.K. Shum, and C. Zeilhofer (2008), Regional 4-D modeling of the ionospheric electron density, Adv. Space Res. 42,4, 782–790, DOI: 10.1016/j.asr.2007.02.050.
  • 23. Schmidt, M., D. Dettmering, M. Mößmer, Y. Wang, and J. Zhang (2011), Comparison of spherical harmonic and B spline models for the vertical total electron content, Radio Sci. 46,6, RS0D11, DOI: 10.1029/2010RS004609.
  • 24. Seeber, G. (2003), Satellite Geodesy: Foundations, Methods, and Applications, 2nd ed., Walter de Gruyter GmbH & Co. KG, Berlin, 589 pp.
  • 25. Stollnitz, E.J., T.D. Derose, and D.H. Salesin (1995a), Wavelets for computer graphics: A primer. Part 1, IEEE Comput. Graph. Appl. 15,3, 76–84, DOI: 10.1109/38.376616.
  • 26. Stollnitz, E.J., T.D. Derose, and D.H. Salesin (1995b), Wavelets for computer graphics: A primer. Part 2, IEEE Comput. Graph. Appl. 15,4, 75–85, DOI: 10.1109/38.391497.
  • 27. Zeilhofer, C. (2008), Multi-dimensional B-spline modeling of spatio-temporal iono-spheric signals, Reihe A123, Deutsche Geodätische Kommission, München.
  • 28. Zeilhofer, C., M. Schmidt, D. Bilitza, and C.K. Shum (2009), Regional 4-D modeling of the ionospheric electron density from satellite data and IRI, Adv. Space Res. 43,11, 1669–1675, DOI: 10.1016/j.asr.2008.09.033.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7178435d-a556-498c-8403-bad1ac5de4da
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.