Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-70ecdd68-0fcc-4e9b-a523-c0f667b4ed2c

Czasopismo

Mining Science

Tytuł artykułu

Data correction method of the persistent scatterer interferometric synthetic aperture radar technique in landslide surface monitoring

Autorzy Xie, Mo-Ewn  Lv, Fu-Xia  Wang, Li-Wei 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Landslides generally cause more damage than first predicted. Currently, many methods are available for monitoring landslides occurrence. Conventional methods are mainly based on single-point monitoring, which omits the aspect of variation in large-scale landslides. Due to the development of radar satellites, the differential interferometric synthetic aperture radar technique has been widely used for landslide monitoring. In this study, an experimental region in the Wudongde Hydropower Station reservoir area was studied using archived spaceborne synthetic aperture radar (SAR) data collected over many years. As the permanent scatterer interferometric SAR (PS-InSAR) technique is an advanced technology, it could be suitably used to overcome the time discontinuity in long time series. However, the accuracy of date processing obtained using the PS-InSAR technique is lower than that obtained using the single-point monitoring method. The monitoring results of the PS-InSAR technique only demonstrate the moving trend of landslides and do not present the actual displacement. The Advanced Land Observation Satellite and a high-precision total station were used for long-term landslide monitoring of the Jinpingzi landslide at the Wudongde Hydropower Station reservoir area. Based on a relationship analysis between the data obtained using the PS-InSAR technique and the total station, a revised method was proposed to reduce the errors in the PS-InSAR monitoring results. The method can not only enhance the monitoring precision of the PS-InSAR technology but also achieve long-term monitoring of landslide displacement from a bird's-eye view.
Słowa kluczowe
EN landslide monitoring   PS-InSAR technology   reservoir landslide   error analysis  
Wydawca Wydział Geoinżynierii, Górnictwa i Geologii, Instytut Górnictwa Politechniki Wrocławskiej
Czasopismo Mining Science
Rocznik 2019
Tom Vol. 26
Strony 91--109
Opis fizyczny Bibliogr. 22 poz., rys., tab.
Twórcy
autor Xie, Mo-Ewn
  • School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
autor Lv, Fu-Xia
  • School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China, b20140024@xs.ustb.edu.cn
autor Wang, Li-Wei
  • College of Civil Engineering and Mechanics, Yanshan University, Qinhuangdao 066004, China
Bibliografia
LIAO M.S., LIN H., 2003, Radar Interferometry: Principles and Signal Processing Basics, Surveying and Mapping Press, Beijing, China.
HANSSEN R.F., 2001, Radar interferometry: data interpretation and error analysis, Springer Science & Business Media, Berlin, Germany.
BIANCHINI S., CIGNA F., RIGHINI G. et al., 2012, Landslide HotSpot Mapping by means of Persistent Scatterer Interferometry [J], Environmental Earth Sciences, Vol. 67, No. 4, 1155–1172, DOI: 10.1007/ s12665-012-1559-5.
BIANCHINI S., HERRERA G., MATEOS R.M., et al., 2013, Landslide Activity Maps Generation by Means of Persistent Scatterer Interferometry [J], Remote Sensing, Vol. 5, No. 12, 6198–6222. DOI: 10.3390/rs5126198.
BOVENGA F., NUTRICATO R., REFICE A. et al., 2006, Application of multi-temporal differential interferometry to slope instability detection in urban/peri-urban areas [J], Engineering Geology, Vol. 88, No. 3, 218–239, DOI: 10.1016/j.enggeo.2006.09.015.
CALVELLO M., PEDUTO D., ARENA L., 2016, Combined use of statistical and D-InSAR data analyses to define the state of activity of slow-moving landslides [J], Landslides, Vol. 14, No. 2, 1–17, DOI: 10.1007/s10346-016-0722-6.
CATANI F., FARINA P., MORETTI S. et al., 2005, On the application of SAR interferometry to geomorphological studies: estimation of landform attributes and mass movements [J], Geomorphology, Vol. 66, No. 1–4, 119–131, DOI: 10.1016/j.geomorph.2004.08.012.
CRUDEN D.M., 1996, Landslides Types and Processes[J], Landslides. Investigation and Mitigation, 36–75.
FERRETTI A., PRATI C., ROCCA F., 2001, Permanent scatterers in SAR interferometry [J], IEEE Transactions on Geoscience & Remote Sensing, Vol. 39, No. 1, 8–20, DOI: 10.1109/36.898661.
FERRETTI A., PRATI C., ROCCA F., 2000, Analysis of permanent scatterers in SAR interferometry [C], Geoscience and Remote Sensing Symposium, 2000. Proceedings. IGARSS 2000. IEEE 2000 International, IEEE, No. 2, 761–763, DOI: 10.1109/IGARSS.2000.861695.
HASTAOGLU K.O., 2016, Comparing the results of PSInSAR and GNSS on slow motion landslides, Koyulhisar, Turkey [J], Geomatics Natural Hazards & Risk, Vol. 7, No. 2, 786–803, DOI: 10.1080/ 19475705.2014.978822.
HE P., XU C.J., 2009, Research on effects of satellite orbit error on SAR interferometry [J], Journal of Geodesy and Geodynamics, Vol. 29, No. 5, 54–57, DOI: 10.3969/j.issn.1671-5942.2009.05.012 (in Chinese).
KONG J.M., 2004, The stage feature of landslide growth and observation [J], Journal of Mountain Science, No. 6, 725–729, DOI: 10.3969/j.issn.1008-2786.2004.06.015 (in Chinese).
LEI L., ZHOU Y., LI J. et al., 2012, Application of PS-InSAR to monitoring Berkeley landslides [J], Journal of Beijing University of Aeronautics and Astronautics, Vol. 38, No. 9, 1224–1226, DOI:10.13700/ j.bh.1001-5965.2012.09.005.
LI J.X., LI C.K., YIN Z.H., 2013, ArcGIS based kriging interpolation method and its application [J], Bulletin of Surveying and Mapping, No. 9, 87–90 (in Chinese).
LU P., CATANI F., TOFANI V. et al., 2014, Quantitative hazard and risk assessment for slow-moving landslides from Persistent Scatterer Interferometry [J], Landslides, Vol. 11, No. 4, 685–696, DOI: 10.1007/s10346-013-0432-2.
NIU W.J., ZHU D.P., CHEN Q.M., 2001, Improvement of Moving Neighborhood Kriging Method [J], Journal of Computer Aided Design and Computer Graphics, Vol. 13, No. 8, 752–756, DOI: 10.3321/ j.issn:1003-9775.2001.08.015 (in Chinese).
SINGHROY V., ALASSET P.J., COUTURE R. et al., 2007, InSAR monitoring of landslides on permafrost terrain in Canada [C], Geoscience and Remote Sensing Symposium, 2007, IGARSS 2007, IEEE International, 2451–2454, DOI: 10.1109/IGARSS.2007.4423338.
WANG G.J., XIE M.W., CHAI X.Q., et al., 2013, D-InSAR-based landslide location and monitoring at Wudongde hydropower reservoir in China [J], Environmental Earth Sciences, Vol. 69, No. 8, 2763–2777, DOI: 10.1007/s12665-012-2097-x.
WANG G.J., XIE M.W., QIU C. et al., 2011, Experiment research of D-InSAR technique on identifying landslide moving in a wide area [J], Journal of University of Science & Technology Beijing, Vol. 33, No. 2, 131–141, DOI: 10.13374/j. issn1001-053x.2011.02.021 (in Chinese).
XIE M.W., HUANG J.X., WANG L.W. et al., 2016, Early landslide detection based on D-InSAR technique at the Wudongde hydropower reservoir [J], Environmental Earth Sciences, Vol. 75, No. 8, 1–13, DOI: 10.1007/s12665-016-5446-3.
XU Q., 2012, Theoretical studies on prediction of landslides using slope deformation process data [J], Chinese Journal of Engineering Geology, Vol. 20, No. 2, 145–151, DOI: 10.3969/j.issn.1004-9665.2012.02.001 (in Chinese).
Uwagi
W PDF błędny tytuł artykułu.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-70ecdd68-0fcc-4e9b-a523-c0f667b4ed2c
Identyfikatory
DOI 10.5277/msc192607