Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-709c8cb2-be12-4b59-8eab-2529b885884d

Czasopismo

Proceedings of ECOpole

Tytuł artykułu

The sludge from physicochemical wastewater pretreatment of low-tonnage production installations

Autorzy Rauckyte-Żak, T.  Żak, S. 
Treść / Zawartość
Warianty tytułu
PL Osady z fizykochemicznego podczyszczania ścieków z instalacji małotonażowych produkcji
Konferencja ECOpole’17 Conference (4-7.10.2017 ; Polanica Zdrój, Poland)
Języki publikacji EN
Abstrakty
EN The results of the assessment of sludge generated in the processes of physicochemical treatment of processing effluents from low-tonnage productions in the installations dedicated to the disposal of such type waste are presented here. It was selected two typical installations of wastewater physicochemical pretreatment of similar instrumental and processing configuration, on which sludge were generated and evaluated. These systems consisted of a storage-averaging tank equipped with belt scrapers light liquid fractions, processing reactor and pressure dewatering units of sludge in chamber filtering presses. Physicochemical pretreatment on these installations were conducted with the use of neutralization, chemical precipitation and coagulation with final thickening using bentonites and/or flocculants. In view of significant differentiations of wastewater types introducing onto the installations in question and the composition of their loads, the obtained sludge were characterised by heterogeneity and different susceptibility to dewater. This study presents the results of a leaching procedure TCLP made for selected sludge samples and the risk assessment using the RAC code. On the basis of chemical analyses, it was found that in the process of selecting the methods of physicochemical pretreatment the effluents one has also to take into consideration the quality of sludge generated as the result of wastewater processing, i.e. the leachability levels of metals from them should be relatively minimal, and the sludge generated and dewatered should be of the lowest risk according to the RAC classification.
PL Przedstawiono wyniki oceny osadów generowanych w procesach fizykochemicznego podczyszczania ścieków przemysłowych z małotonażowych produkcji na instalacjach dedykowanych do unieszkodliwiania tego rodzaju odpadów. Dwie wytypowane instalacje fizykochemicznego podczyszczania o podobnej konfiguracji aparaturowo-procesowej, na których generowano osady poddane ocenie, składały się ze zlewnych zbiorników magazynująco-uśredniających zaopatrzonych w zbieraki taśmowe frakcji cieczy lekkich, reaktorów procesowych oraz zespołów ciśnieniowego odwadniania osadów na komorowych prasach filtracyjnych. Fizykochemiczne podczyszczanie na tych instalacjach prowadzono z zastosowaniem neutralizacji, strącania chemicznego i koagulacji z końcowym zagęszczaniem bentonitami i/lub flokulacyjnie. Z uwagi na znaczące zróżnicowanie rodzaju ścieków kierowanych na przedmiotowe instalacje i zawartych w nich ładunków również uzyskiwane osady charakteryzowały się niejednorodnością oraz różną podatnością do odwadniania. W pracy przedstawiono wyniki z przeprowadzonej procedury wymywalności TCLP dla wytypowanych próbek osadów oraz ocenę ryzyka, stosując kod RAC. Na podstawie wykonanych analiz stwierdzono, że w wyborze metod fizykochemicznego podczyszczania należy również kierować się jakością uzyskiwanych osadów poprocesowych w takim wymiarze, aby poziomy wymywalności z nich metali ciężkich były relatywnie minimalne, a generowane i odwodnione odpady klasyfikowane jako najbardziej bezpieczne według kodu klasyfikacji RAC.
Słowa kluczowe
PL ścieki technologiczne   małotonażowe produkcje   fizykochemiczne podczyszczanie   osady   TCLP   skład frakcyjny   metale ciężkie   kod oceny ryzyka   RAC  
EN processing effluents   low-tonnage production   physico-chemical wastewater pretreatment   sludge   TCLP   fractional composition   heavy metals   risk assessment code   RAC  
Wydawca Towarzystwo Chemii i Inżynierii Ekologicznej
Czasopismo Proceedings of ECOpole
Rocznik 2018
Tom Vol. 12, No. 1
Strony 63--75
Opis fizyczny Bibliogr. 45 poz., tab.
Twórcy
autor Rauckyte-Żak, T.
  • Faculty of Chemical Technology and Engineering, University of Science and Technology, ul. Seminaryjna 3, 85-326 Bydgoszcz, Poland, terra@utp.edu.pl
autor Żak, S.
  • Faculty of Chemical Technology and Engineering, University of Science and Technology, ul. Seminaryjna 3, 85-326 Bydgoszcz, Poland
Bibliografia
[1] Andrus M. A review of wastewater characteristics for water reuse/recycling after chemical and equipment processing. Met Finish. 2010;108(6):47-49. DOI: 10.1016/S0026-0576(10)80033-9.
[2] Herrero M, Bringas E, San Román MF, Ortiz I. Membrane operations for the recovery of valuable metals from industrial wastewater. In: Figoli A, Criscuoli A, editors. Sustainable Membrane Technology for Water and Wastewater Treatment. Singapore: Springer Singapore; 2017:319-348. DOI: 10.1007/978-981-10-5623-9_12.
[3] Hosseini SS, Bringas E, Tan NR, Ortiz I. Recent progress in development of high performance polymeric membranes and materials for metal plating wastewater treatment: a review. J Water Process Eng. 2016;9:78-110. DOI: 10.1016/j.jwpe.2015.11.005.
[4] Binnemans K, Jones PT, Blanpain B, Gerven TV, Yang Y, Walton A, et al. Recycling of rare earths: a critical review. J Clean Prod. 2013;51:1-22. DOI: 10.1016/j.jclepro.2012.12.037.
[5] Golev A, Scott M, Erskine PD, Ali SH, Ballantyne GR. Rare earth supply chains: current status, constraints and opportunities. Resour Policy. 2014;41(1):52-59. DOI: 10.1016/j.resourpol.2014.03.004.
[6] Cui M, Jang M, Kang K, Kim D, Snyder SA, Khim J. A novel sequential process for remediating rare-earth wastewater. Chemosphere. 2016;144:2081-2090. DOI: 10.1016/j.chemosphere.2015.10.107.
[7] Binnewies M, Bokelmann K, Gellermann C, Gäth S, Stauber R. Konzepte zur Wiedergewinnung strategischer Metalle uber die Gasphase (Production and recovery of strategic metals via the gas phase). Chemie-Ingenieur-Technik. 2015;87(11):1486-1497. DOI: 10.1002/cite.201400102.
[8] Fromer NA, Diallo MS. Nanotechnology and clean energy: Sustainable utilization and supply of critical materials. J Nanopart Res. 2013;15(11). DOI: 10.1007/s11051-013-2011-9.
[9] Meschke K, Daus B, Haseneder R, Repke JU. Strategic elements from leaching solutions by nanofiltration - Influence of pH on separation performance. Sep Pur Technol. 2017;184:264-274. DOI: 10.1016/j.seppur.2017.04.048.
[10] Rodriguez J, Stopić S, Krause G, Friedrich B. Feasibility assessment of electrocoagulation towards a new sustainable wastewater treatment. Environ Sci Pol Res. 2007;14(7):477-482. DOI: 10.1065/espr2007.05.424.
[11] Kolesnikov VA, Il'in VI, Brodskiy VA, Kolesnikov AV. Electroflotation during wastewater treatment and extraction of valuable compounds from liquid technogenic waste: A review. Theoret Foundat Chem Eng. 2017;51(4):369-383. DOI: 10.1134/S0040579517040200.
[12] Fujita Y, Barnes J, Eslamimanesh A, Lencka MM, Anderko A, Riman RE, et al. Effects of simulated rare earth recycling wastewaters on biological nitrification. Environ Sci Technol. 2015;49(16):9460-9468. DOI: 10.1021/acs.est.5b01753.
[13] Álvarez EA, Mochón MC, Sánchez JCJ, Rodríguez MT. Heavy metal extractable forms in sludge from wastewater treatment plants. Chemosphere. 2002;47(7):765-775. DOI: 10.1016/S0045-6535(02)00021-8.
[14] Chen F, Hu Y, Dou X, Chen D, Dai X. Chemical forms of heavy metals in pyrolytic char of heavy metal-implanted sewage sludge and their impacts on leaching behaviours. J Anal Appl Pyrol. 2015;116:152-160. DOI: 10.1016/j.jaap.2015.09.015.
[15] Oiler I, Malato S, Sánchez-Pérez JA. Combination of advanced oxidation processes and biological treatments for wastewater decontamination - a review. Sci Total Environ. 2011;409(20):4141-4166. DOI: 10.1016/j.scitotenv.2010.08.061.
[16] Metcalf E. Wastewater Engineering. Treatment and Reuse. New York, USA: McGraw-Hill; 2003.
[17] Żak S. Treatment of the processing wastewaters containing heavy metals with the method based on flotation. Ecol Chem Eng S. 2012;19(3):433-438. DOI: 10.2478/v10216-011-0033-8.
[18] EN ISO 10523:2012. Water quality - Determination of pH. https://www.iso.org/standard/51994.html.
[19] PN-EN 872:2007. Water quality - Determination of suspended solids - Method by filtration through glass fibre filters. http://sklep.pkn.pl/pn-en-872-2007p.html.
[20] ISO 11905-1:1997. Water quality - Determination of nitrogen - Part 1: Method using oxidative digestion with peroxodisulfate. https://www.iso.org/standard/2155.html.Terese Rauckyte-Żak 74 and Sławomir Żak
[21] PN-EN ISO 6878:2006. Water quality - Determination of phosphorus - Ammonium molybdate spectrometric method (ISO 6878:2004). http://sklep.pkn.pl/pn-en-iso-6878-2006p.html.
[22] PN-C-04588-03:1978. Water and sewage. Research on the content of fluorine compounds. Determination of fluorides by potentiometric method using an ion-selective electrode (standard withdrawn without substitution).
[23] PN-C-04576-08:1982. Water and sewage. Research on the content of nitrogen compounds. Determination of nitrate nitrogen by the colorimetric method with sodium salicylate (standard withdrawn without substitution).
[24] PN-ISO 7150-1:2002. Water quality - Determination of ammonium - Part 1: Manual spectrometric method. http://sklep.pkn.pl/pn-iso-7150-1-2002p.html.
[25] PN-ISO 15705:2005. Water quality - Determination of the chemical oxygen demand index (ST-COD) - Small-scale sealed-tube method. http://sklep.pkn.pl/pn-iso-15705-2005p.html.
[26] EN ISO 11885:2009. Water quality - Determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES) (ISO 11885:2007). https://pzn.pkn.pl/kt/info/published/9000128836.
[27] PN-ISO 6332:2001P. Water quality - Determination of iron - Spectrometric method using 1,10- phenanthroline. http://sklep.pkn.pl/pn-iso-6332-2001p.html.
[28] PN-ISO 6332:2001/Ap1:2016-06P. Water quality -- Determination of iron -- Spectrometric method using 1,10-phenanthroline). http://sklep.pkn.pl/pn-iso-6332-2001p.html.
[29] www.kemipol.com.pl/products.
[30] http://weglostal.com/produkty/.
[31] http://www.eko-chemia.pl/oferta.
[32] http://www.brenntag.com/poland/pl/oferta/oddzia%C5%82y-bran%C5%BCowe/woda-i-%C5%9Bcieki/index.jsp.
[33] http://www.zebiec.pl/mineraly/bentonit/bentonit-s11-zebiec/.
[34] Tessier A, Campbell P, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem. 1979;51(7):844-851. DOI: 10.1021/ac50043a017.
[35] USEPA. Test methods for evaluating solid waste. Physical/chemical methods. Method 1311. Toxicity characteristic leaching procedure (TCLP), EPA Publ. SW-846. 3rd ed. Vol. 1A. Office of Solid Waste and Emergency Response, USEPA, Washington, DC, 1992. https://www.epa.gov/hw-sw846/sw-846-testmethod-1311-toxicity-characteristic-leaching-procedure.
[36] Rauckyte-Żak T. Comparison of the sequential extraction methods for soil subjected to the long-term effect of sewage. Proc ECOpole. 2015;9(2):489-497. DOI: 10.2429/proc.2015.9(2)057.
[37] Żak S, Rauckyte-Żak T, Laurinavičius A. The influence of treated oleo-chemical wastewater applications on the metal speciation forms in soils. J Environ Eng Landsc. 2013;21(2):85-95. DOI: 10.3846/16486897.2013.773259.
[38] Rauckyte-Żak T. Assessment of post-processing sludges from rail freight car wash wastewaters. The primary sludges. Proc ECOpole. 2017;11(1):77-86. DOI: 10.2429/proc.2017.11(1)008.
[39] Rauckyte-Żak T, Żak S. Wastewaters treatment from rail freight car wash. Assessment of physicochemical treated sludges. Proc ECOpole. 2017;11(1):87-96. DOI: 10.2429/proc.2017.11(1)009.
[40] Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. https://eur-lex.europa.eu/legalcontent/en/ALL/?uri=CELEX:32008R1272.
[41] Bal S, Bal SS. Cobalt(II) and manganese(II) complexes of novel Schiff bases, synthesis, characterization, and thermal, antimicrobial, electronic, and catalytic features. Adv Chem. 2014; (Article ID 506851):12p. DOI: 10.1155/2014/506851.
[42] Wyrzykowski D, Chmurzyński L. Thermodynamics of citrate complexation with Mn2+, Co2+, Ni2+ and Zn2+ ions. J Thermal Anal Calorimetry. 2010;102(1):61-64. DOI: 10.1007/s10973-009-0526-4.
[43] Deng Y-F, Zhou Z-Y. Manganese citrate complexes: syntheses, crystal structures and thermal properties. J Coord Chem. 2009;62(5):778-788. DOI: 10.1080/00958970802376257.
[44] Hamada YZ, Cox R, Hamada H. Cu2+ citrate dimer complexes in aqueous solutions. J Basic Appl Sci. 2015;11:583-589. DOI: 10.6000/1927-5129.2015.11.78.
[45] Gabriel C, Raptopoulou C, Terzis A, Tanguolis V, Mateescu C, Salifoglou A. pH-specific synthesis and spectroscopic, structural, and magnetic studies of a chromium(III)-citrate species. Aqueous solution The sludge from physicochemical wastewater pretreatment of low-tonnage production installations 75 speciation of the binary chromium(III)-citrate system. Inorg Chem. 2007;46(8):2998-3009. DOI: 10.1021/ic061480j.
Uwagi
PL Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-709c8cb2-be12-4b59-8eab-2529b885884d
Identyfikatory
DOI 10.2429/proc.2018.12(1)006