PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of Fluid Flow and Solidification in Billet Caster Continuous Casting Mold with Electromagnetic Stirring

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Electromagnetic stirrer generates swirling fluid flow, boosts the mixing of molten steel near the solidification front and enhances the quality of the continuously cast products. In the present investigation, attention is paid towards studying the effect of in-mold electromagnetic stirring on fluid flow and solidification. A three-dimensional coupled mathematical model of solidification and magnetohydrodynamics has been established for billet caster mold. The alternating magnetic field is applied to the solidification model where fluid flow, heat transfer, and electromagnetic equations are solved simultaneously. It has been found that an increase in field frequency decreases the length of stirring and the liquid fraction of the steel at the center of the mold exit. Tangential velocity near the solidification front increases with the magnetic field frequency or flux density, due to which, a break in solidified shell near stirrer position is predicted whose width increases accordingly.
Rocznik
Strony
413--424
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wzory
Twórcy
autor
  • Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Uttarakhand-247667, India
autor
  • Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Uttarakhand-247667, India, pkjhafme@iitr.ac.in
Bibliografia
  • [1] M. Javurek, M. Barna, P. Gittler, K. Rockenschaub, M. Lechner, Steel Res. Int. 79, 617-626 (2008).
  • [2] T. Toh, H. Hasegawa, H. Harada, ISIJ Int. 41, 1245-1251 (2001).
  • [3] T. T. Natarajan, N. El-Kaddah, Appl. Math. Model. 28, 47-61 (2004).
  • [4] M. Rywotycki, Z. Malinowski, J. Giełżecki, A. Gołdasz, Arch. Metall. Mater. 59, 487-492 (2014).
  • [5] H. Nakata, T. Inoue, H. Mori, K. Ayata, T. Murakami, T. Kominami, ISIJ Int. 42, 264-272 (2002).
  • [6] X. P. Song, S. S. Cheng, Z. J. Cheng, Ironmak. Steelmak. 40, 189-198 (2013).
  • [7] K. Stransky, F. Kavicka, B. Sekanina, J. Stetina, V. Gontarev, J. Dobrovska, Mater. Technol. 45, 163-166 (2011).
  • [8] T. Toh, E. Takeuchi, M. Hojo, H. Kawai, S. Matsumura, ISIJ Int. 37, 1112-1119 (1997).
  • [9] P. P. Sahoo, A. Kumar, J. Halder, M. Raj, ISIJ Int. 49, 521-528 (2009).
  • [10] N. Govindaraju, B. Q. Li, Energy Conserv. Manag. 43, (2002) 335-344.
  • [11] B. Wang, Z. G. Yang, X. F. Zhang, Y. T. Wang, C. P. Nie, Q. Liu, et al., Metalurgija 54, 327-330 (2015).
  • [12] S. Wang, G. A. De Toledo, K. Välimaa, S. Louhenkilpi, ISIJ Int. 54, 2273-2282 (2014).
  • [13] X. Geng, X. Li, F. B. Liu, H. B. Li, Z. H. Jiang, Ironmak. Steelmak. 00, 1-8 (2015).
  • [14] H. Liu, M. Xu, S. Qiu, H. Zhang, Metall. Mater. Trans. B. 43, 1657-1675 (2012).
  • [15] B. Ren, D. Chen, H. Wang, M. Long, Steel Res. Int. 86, 1104-1115 (2015).
  • [16] N. El-Kaddah, T. T. Natarajan, in: CFD in the Minerals and Process Industries (CSIRO), Melbourne, Australia, 339 (1999).
  • [17] M. Barna, M. Javurek, J. Reiter, M. Lechner, BHM. 154, 518-522 (2009).
  • [18] D. J. Im, J. S. Hong, I. S. Kang, Comput. Fluids. 70, 13-20 (2012).
  • [19] A. Buchholz, G. Rombach, G.-U. Gruen, Electromagentic stirring in melting furnaces – A critical evaluation, in: John Grandfield (Ed.) Light Metals 2014, John Wiley & Sons, (2014).
  • [20] ANSYS®, Academic Research, Release 14.0, Help Syst. Fluent, ANSYS, Inc. (2013).
  • [21] A. Maurya, P. K. Jha, J. Inst. Eng. Ser. C. 48, 45-52 (2017).
  • [22] D. Jiang, M. Zhu, Steel Res. Int. 85, 1-11 (2014).
  • [23] M. R. R. I. Shamsi, S. K. Ajmani, ISIJ Int. 47, 433-442 (2007).
  • [24] M. Bielnicki, J. Jowsa, A. Cwudziński, Arch. Metall. Mater. 60, 257-262 (2015).
  • [25] T. H. Shih, W. W. Liou, A. Shabbir, Z. Yang, J. Zhu, Comput. Fluids. 24, 227-238 (1995).
  • [26] P. K. Jha, S. K. Dash, S. Kumar, ISIJ Int. 41, 1437-1446 (2001).
  • [27] P. K. Jha, S. K. Dash, Int. J. Numer. Methods Heat Fluid Flow. 14, 953-979 (2004).
  • [28] M. Rywotycki, K. Miłkowska-Piszczek, L. Trębacz, Arch. Metall. Mater. 57, 386-393 (2012).
  • [29] Z. Malinowski, T. Telejko, B. Hadała, Arch. Metall. Mater. 57, 325-351 (2012).
  • [30] M. Fabbri, F. Galante, F. Negrini, E. Takeuchi, T. Toh, COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 22, 10-19 (2003).
  • [31] A. Jonayat, B. G. Thomas, Metall. Mater. Trans. B. 45, 1842-1864 (2014).
  • [32] H. Nakato, M. Ozawa, K. Kinoshita, Y. Habu, T. Emi, Trans. ISIJ. 24, 957-965 (1984).
  • [33] W. Kurz, C. Bezencon, M. Gaumann, Sci. Technol. Adv. Mater. 2, 185-191 (2001).
  • [34] M. M’Hamdi, G. Lesoult, E. Perrin, J. M. Jolivet, ISIJ Int. 36, S197-S200 (1996).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6fc2e9a0-8326-4264-a8a7-3da671ef7f9f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.