Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Echinoids as substrates for encrustation : review and quantitative analysis

Treść / Zawartość
Warianty tytułu
Języki publikacji
The existing literature, including records of both fossil and extant echinoid encrustation, is quantitatively analysed and reviewed. This shows that echinoid encrustation (number of encrusted echinoid taphocoenoses) has increased nearly continuously and dramatically to the present day, as confirmed by linear regression values of more than 85 per cent. It also demonstrates that current levels of echinoid fouling stabilised by the Miocene, while there has been a more or less continuous record of echinoid encrustation since the Late Cretaceous. Several increases have been identified since echinoid encrustation first noted occurrence from the Late Carboniferous. This trend is explained as the probable result of corresponding increases in productivity (richness, biomass, energetics, ecospace utilisation) and resources in the marine environment, including epibionts and their hosts. This conclusion matches other indicators, including the number and thickness of shell beds, bioerosion and predation intensity or biodiversity. The trajectory might have been altered to some degree by biases (e.g. selective recording, sampling effort, outcrop area, rock volume) in the same way as palaeobiodiversity estimates. Two recognised long-term gaps in echinoid encrustation (Upper Ordovician–Lower Carboniferous and Permian–Lower Cretaceous) are explained in part as bias and as biological and taphonomic signals. These gaps are caused mostly by the rapid disarticulation of Palaeozoic-type echinoids, the methodology applied here, and a lack of interest in the encrustation of Jurassic echinoids. Conversely, three short-term gaps in the Cenozoic are interpreted exclusively as bias. If correct, the present study demonstrates quantitatively the step-wise increase of productivity through time. It also suggests potential focus on further study, including the collection of new data from the field and pre-existing collections, as best for other encrustation proxies (e.g., percent of coverage by epibionts, ratio of encrusted to nonencrusted shells, taxa richness or numerical abundance of sclerobionts) in cases of large-scale analyses.
Słowa kluczowe
Opis fizyczny
Bibliogr. 146 poz., tab., wykr.
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
  • 1. Allison, P. A. & Bottjer, D.J., 2010. Taphonomy: Process and Bias Through Time. Topics in Geobiology, vol. 32. Springer, Berlin, 599 pp.
  • 2. Allison, P. A. & Briggs, D. E. G., 1993a. Exceptional fossil record: distribution of soft-tissue preservation through the Phanerozoic. Geology, 21: 605-608.
  • 3. Allison, P. A. & Briggs, D. E. G., 1993b. Paleolatitudinal sampling bias, Phanerozoic species diversity, and the end-Permian extinction. Geology, 21: 65-68.
  • 4. Alroy, J., Aberhan, M., Bottjer, D. J., Foote, M., Fürsich, F. T., Harries, P. J., Hendy, A. J. W., Holland, S. M., Ivany, L. C., Kiessling, W., Kosnik, M. A., Marshall, C. R.,McGowan, A. J., Miller, A. I., Olszewski, T. D., Patzkowsky, M. E., Peters, S. E., Villier, L., Wagner, P. J., Bonuso, N., Borkow, P. S., Brenneis, B., Clapham, M. E., Fall, L. M., Ferguson, C. A., Hanson, V. L., Krug, A. Z., Layou, K. M., Leckey, E. H., Nürnberg, S., Powers, C. M., Sessa, J. A., Simpson, C., Tomasovych, A. & Visaggi, C. C., 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science, 321: 97-100.
  • 5. Ausich, W. I., 2001. Echinoderm taphonomy. - In: Jangoux, M. & Lawrence, J. M. (eds), Echinoderm Studies A. A. Balkema, Rotterdam, pp. 171-227.
  • 6. Bambach, R. K., 1993. Seafood through time: changes in biomass, energetics and productivity in the marine ecosystem. Paleobiology, 19: 372-397.
  • 7. Bambach, R. K., 1999. Energetics in the global marine fauna: a connection between terrestrial diversification and change in the marine biosphere. Geobios, 32: 131-144.
  • 8. Bambach, R. K., Knoll, A. H. & Sepkoski, J. J., 2002. Anatomical and ecological constraints on Phanerozoic animal diversity in the marine realm. Proceedings of the National Academy of Sciences USA, 99: 6854-6859.
  • 9. Barnes, D. K. A., 2006. Temporal-spatial stability of competition in marine boulder fields. Marine Ecology Progress Series, 314: 15-23.
  • 10. Barnes, D. K. A. & Dick, M. H., 2000. Overgrowth competition between clades: implications for interpretation of the fossil record and overgrowth indices. Biology Bulletin, 199: 85-94.
  • 11. Barras, C. G., 2008. Morphological innovation associated with the expansion of atelostomate irregurar echinoids into fine-grained sediments during the Jurassic. Palaeogeography, Palaeoclimatology, Palaeoecology, 263: 44-57.
  • 12. Bather, F. A., 1909. Triassic echinoderms of Bakony. Resultate der wissenschaftlichen Erforschung des Balatonsees, 1: 1286.
  • 13. Benton, M. J., 1995. Diversification and extinction in the history of life. Science, 268: 52-58.
  • 14. Benton, M. J., 2009. The fossil record: biofogrcal or geofogrcal signal. In: Sepkoski, D. & Ruse, M., (eds), The Paleobiological Revolution: Essays on the Growth of Modern Paleontology. University ofChicago Press, Chicago, pp. 43-59.
  • 15. Bernard, E. L., Ruta, M., Tarver, J. E. & Benton, M. J., 2010. The fossil record of early tetrapods: worker effort and the end- Permian mass extinction. Acta Palaeontologica Polonica, 55: 229-239.
  • 16. Bordeaux, Y. L. & Brett, C. E., 1990. Substrate specific associations of epibionts on Middle Devonian brachiopods: implications for paleoecology. Historical Biology, 4: 203-220.
  • 17. Borszcz, T., Kuklinski, P. & Zaton, M., 2012. Encrustation patterns on Late Cretaceous (Turonian) echinoids from southern Poland. Facies DOI 10.1007/s10347-012-0319-z
  • 18. Brett, C. E., Smrecak, T., T., Hubbard, K. P. & Walker, S., 2012. Marine sclerobiofacies: encrustrng and endolithic communities on shells through time and space. International Year of Planet Earth, Part I: 129-157.
  • 19. Campbell, A. C., 1983. Form and function of pedicellariae. Echinoderm Studies, 1: 139-167.
  • 20. Campbell, A. C. & Rainbow, P. S., 1977. The role of pedicellariae in preventing barnacle settlement on the seaurchin test. Marine and Freshwater Behaviour and Physiology, 4: 253-260.
  • 21. Cerrano, C., Bertolino, M., Valisano, L., Bavestrello, G. & Calcinai, B., 2009. Epibiotic demosponges on the Antarctic scallop Adamussium colbecki (Smith, 1902) and the cidaroid urchins Ctenocidaris perrieri Koehler, 1912 in the nearshore habitats of the Victoria Land, Ross Sea, Antarctica. Polar Biology, 32: 1067-1076.
  • 22. Coppard, S. E., Kroh, A. & Smith, A. B. 2012. The evolution of pedicellariae in echinoids: an arms race against pests and parasites. Acta Zoologica, 93: 125-148.
  • 23. David, B., Stock, S. R., De Carlo, F., Hétérier, V. & De Ridder, C., 2009. Microstructures of Antarctic cidaroid spines: diversity of shapes and ectosymbiont attachments. Marine Biology, 156: 1559-1572.
  • 24. Davis, M., Walker, J. M., Hopkins, T. S. & Thompson, L. E., 2005. A study of epibiont distribution on the spines of the cidaroid sea urchin, Eucidaris tribuloides (Lamarck, 1816) from the shall ow shelf of the eastern Gulf of Mexi co. In: Nebelsick, J.H. & Heinzeller T. (eds), Echinoderms: München, Proceedings of the 11th International Echinoderm Conference, Taylor & Francis, London, pp. 207-211.
  • 25. Donovan, S. K., 1991. The taphonomy of echinoderms: calcareous multielement skeletons in the marine environment. In: Donovan, S. K. (ed), The Processes of Fossilization. Belhaven Press, London, pp. 241-269.
  • 26. Donovan, S. K., 2001. Evolution of Caribbean echinoderms during the Cenozoic: moving towards a complete piclure using all of the fossils. Palaeogeography, Palaeoclimatology, Palaeoecology, 166: 177-192.
  • 27. Dunhill, A. M., 2011. Using remote sensing and a geographic information system to quantify rock exposure area in England and Wales: implicaiions for paleodiversitystudies. Geology, 39: 111-114.
  • 28. Eble, G. J., 2000. Contrasting evolutionary flexibility in sister groups: disparity and diversity in Mesozoic atelostomate echinoids. Paleobiology, 26: 56-79.
  • 29. El-Hedeny, M., 2007. Encrustation and bioerosion on Middle Miocene bivalve shells and echinoid skeleions: paleoenvi- ronmental implications. Revue de Paléobiologie, 26: 381-389.
  • 30. Ernst, G., Hähnel, W., von & Seibertz, E., 1973. Aktuopalä- ontologie und Merkmalsvariabilität bei mediterranen Echi- niden und Rückschlüsse auf die Ökologie und Artumgrenzung fossiler Formen. Paläontologische Zeitschrift, 47: 188216.
  • 31. Finnegan, S., McClain, C. M., Kosnik, M. A. & Payne, J. L., 2011. Escargots through time: an energetic comparison of marine gastropod assemblages before and after the Mesozoic Marine Revolution. Paleobiology, 37: 252-269.
  • 32. Foote, M. & Sepkoski, J. J., 1999. Absolute measures of the completeness of the fossil record. Nature, 398: 415-417.
  • 33. Fraiser, M. L. & Bottjer, D. J., 2007. When bivalves took over the world. Paleobiology, 33: 397-413.
  • 34. Gale, A. S., 2002a. Corals. In: Smith, A. B. & Batten, D. J. (eds), Fossils of the Chalk. Palaeontographical Association, London, pp. 42-46.
  • 35. Gale, A. S., 2002b. Serpulids. In: Smith, A. B. & Batien, D. J. (eds), Fossils of the Chalk. Palaeontographical Association, London, pp. 47-52.
  • 36. Giltay, L., 1934. Note sur l’association de Balanus concavuspaci- ficus Pilsbry (Cirripède) et Dendraster excentricus (Esch- scholtz) (Échinoderme). Bulletin du Musée royal d’Histoire Naturelle de Belgique, 10: 1-7.
  • 37. Giusberti, L., Fantin, M. & Buckeridge, J., 2005. Ovulaster protodecimae n. sp. (Echinoidea, Spatangoida) and associated epifauna (Cirripedia, Verrucidae) from the Danian of northeastern Italy. Rivista Italiana di Paleontologia e Stratigrafia, 111: 455-465.
  • 38. Greenstein, B. J., 1992. T aphonomic bias and the evolutionary history of the family Cidaridae (Echinodermata: Echinoidea). Paleobiology, 18: 50-79.
  • 39. Gutt, J. & Schickan, T., 1998. Epibiotic relationships in the Antarctic benthos. Antarctic Science, 10: 398-405.
  • 40. Hagdorn, H., 1995. Die Seeigel des germanischen oberen Muschelkalks. Geologische und paläontologische Mitteilungen, 20: 245-281.
  • 41. Hannisdal, B. & Peters, S. E., 2010. On the relationship between macro stratigraphy and geological processes: quantitative information capture and sampling robustness. Journal of Geology, 118: 111-130.
  • 42. Hansen, T. A. 1988. Early Tertiary radiation of marine molluscs and the longterm effects of the Cretaceous-Teriiary extinction. Paleobiology, 14: 37-51.
  • 43. Harper, E. M., 2003. Assessing the importance of drilling predation over the Palaeozoic and Me iozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 201: 185-198.
  • 44. Hawkins, H. H., 1946. Cravenechinus, a new type of echinoid from the Carboniferous limestone. Geological Magazine, 83: 192-197.
  • 45. Hendy, A. J. W., 2009. The influence of lithification on Cenozoic marine biodiversity trends. Paleobiology, 35: 51-62.
  • 46. Hess, H., 1975. Die fossilen Echinodermen des Schweizer Juras. Veröffentlichungen aus dem Natruhistorischen Museum Basel, 8: 5-130.
  • 47. Houk, J. L. & Duffy, J. M., 1972. Two new sea urchin acorn barnacle associations. California Fish and Game, 58: 321-323.
  • 48. Huntley, J. W. & Kowalewski, M., 2007. Strong coupling of predation intensity and diversity in the Phanerozoic fossil record. Proceedings of the National Academy of Sciences USA, 104: 15006-15010.
  • 49. Jablonski, D., 1993. The tropics as a source of evolutionary novelty: the post-Palaeozoic fossil record of marine invertebrates. Nature, 364: 142-144.
  • 50. Jablonski, D. & Bottjer, D. J., 1991. Environmental patterns in the origins of higher taxa: the post-Paleozoic fossil record. Science, 252: 1831-1833.
  • 51. Jablonski, D., Roy, K., Valentine, J. W., Price, R. M. & Anderson, P. S., 2003. The impact of the Pull of the Recent on the history of bivalve diversity. Science, 300: 1133-1135.
  • 52. Jackson, R. T., 1912. Phylogeny of the Echini, with a revision of Palaeozoic species. Memoirs of the Boston Society of Natural History, 7: 1-491.
  • 53. Jagt, J. W. M., Neumann, C. & Schulp, A. S., 2007. Bioimmuring Late Creiaceous and Recent oysiers: ‘A view from within’. Geologica Belgica, 10: 121-126.
  • 54. Kidwell, S. M., 2001. Major biases in the fossil record. In: Briggs, D. E. G. & Crowther, P. R. (eds), Paleobiology II. A Synthesis. Blackwell, Oxford, pp. 299-305.
  • 55. Kidwell, S. M. & Baumiller, T., 1990. Experimental disintegration of regular echinoids: roles of temperature, oxygen, and decay thresholds. Paleobiology, 16: 247-271.
  • 56. Kidwell, S. M. & Brenchley, P. J., 1994. Patterns of bioclastic ac- cumuiaiion through the Phanerozoic: changes in input or in destruction? Geology, 22: 1139-1143.
  • 57. Kier, P. M., 1965. Evoiuiionary trends in Paieozoic echinoids. Journal of Paleontology, 39: 436-465.
  • 58. Kier, P. M., 1968. The Triassic echinoids of North America. Journal of Paleontology, 42: 1000-1006.
  • 59. Kier, P. M., 1974. Evolutionary trends and their functional significance in the post-Paleozoic echinoids. Journal of Paleontology, 48: 1-95.
  • 60. Kier, P. M., 1977a. The poor fossil record of the regular echinoid. Paleobiology, 3: 168-174.
  • 61. Kier, P. M., 1977b. Triassic echinoids. Smithsonian Contributions to Paleobiology, 30: 1-88.
  • 62. Kier, P. M., 1982. Rapid evo luiion in echinoids. Palaeontology, 25: 1-9.
  • 63. Kier, P. M., 1984. Echinoids from the Triassic (St Cassian) of Italy, their lantern supports, and a revised phylogeny of Triassic echinoids. Smith so nian Contributions to Paleobiology, 56: 1-41.
  • 64. Kiessling, W., 2001. Paleoclimatic significance of Phanerozoic reefs. Geology, 29: 751-754.
  • 65. Kiessling, W., Aberhan, M. & Villier, L., 2008. Phanerozoic trends in skeletal mineralogy driven by mass extinctions. Nature Geoscience, 1: 527-530.
  • 66. Kroh, A. & Smith, A. B., 2010. The phylogeny and classification of post-Palaeozoic echinoids. Journal of Systematic Palaeontology, 7: 147-212.
  • 67. Kudrewicz, R., 1992. The endemic echinoids Micraster (Micraster) maleckii Mączyńska, 1979, from the Santonian deposits of Korzkiew near Cracow (southern Pol and); their ecology, taphonomy and evolutionary position. Acta Geologica Polonica, 42: 123-134.
  • 68. Kukliński, P., 2009. Ecology of stone-encrusting organisms in the Greenland Sea - a review. Polar Research, 28: 222-237.
  • 69. Lescinsky, H. L., 1996. Don’t overlook the epibionts! Palaios, 11: 1-2.
  • 70. Lescinsky, H. L., 2001. Epibionts. In: Briggs, D. E. G. & Crowther, P. R. (eds), Palaeobiology II. A Synthesis. Blackwell Publishing, Oxford, pp. 464-468.
  • 71. Lescinsky, H. L., Edinger, E. & Risk, M., 2002. Moliusc shell encrustation and bioerosion rates in a modern epeiric sea: taphonomy experiments in the Java Sea, Indonesia. Palaios, 17: 171-191.
  • 72. Linse, K., Walker, L. J. & Barnes, D. K. A., 2008. Biodiversity of echinoids and their epibionts around the Scot ia Arc, Antarctica. Antarctic Science, 20: 227-244.
  • 73. Małecki, J., 1982. Bases of Upper Cretaceous octocorals from Poland. Acta Palaeontologica Polonica, 27: 65-75.
  • 74. Martin, R. E., 1996. Secular increase in nutrient levels through the Phanerozoic; implications for productivity, biomass, and diversity of the marine biosphere. Palaios, 11: 209-219.
  • 75. Martin, R., 2003. The fossil record of biodiversity: nutrients, productivity, habitat area and differential preservation. Lethaia, 36: 179-193.
  • 76. McGowan, A. J. & Smith, A. B., 2008. Are global Phanerozoic marine diversity curves truly global? A study of the relationship between regional rock records and global Phanerozoic marine diversity. Paleobiology, 34: 80-103.
  • 77. McKenzie, J. D. & Grigolava, I. V., 1996. The echinoderm surface and its role in preventing microfouling. Biofouling, 10: 261272.
  • 78. McKinney, M. L., 1986. Ecological causation of heterochrony: a test and implications for evolutionary theory. Paleobiology, 12: 282-289.
  • 79. McKinney, F. K., 1995. One hundred million years of competitive interactions between bryozoan clades: asymmetrical but not escalating. Biological Journal of the Linnean Society, 56: 465-481.
  • 80. Miksa, G., 2009. The sand dollar Parascutella (Echinoidea) in the Late Badanian of Croatia. Rivista Italiana di Paleontologia e Stratigrafia, 115: 101-109.
  • 81. Mitrović-Petrović, J., 1972. Le rapport entre le genre échinitique Clypeaster et quelques organismes sédimentaires. Annales Géologique de la Péninsule Balkanique, 37: 69-87.
  • 82. Mitrović-Petrović, J. & Urosević-Dacić, D., 1963. Incrustings of bryozoans colonies on the shells of Middle Miocene echinoids. Vesnik Zavoda za Geloska i Geofizicka Istraźivanja, 20: 259-287.
  • 83. Müller, A. H., 1969. Zur Ökologie und Biostratinomie eines Echi- nocorys (Echinoidea) mit eigentümlichem Naticiden-Betall aus der Oberkreide. Monatsberichte der Deutschen Akademie der Wissenschaften zu Berlin, 11: 672-684.
  • 84. Nebelsick, J. H., 1996. Encrustation of small substrates in Tertiary limestones and their importance for carbonate sedimentation. Goöttinger Arbeiten zur Geologie und Paläontologie, 2: 161-167.
  • 85. Nebelsick, J., 1999a. Taphonomic compariton between Recent and fossil sand dollars. Palaeogeography, Palaeoclimatology, Palaeoecology, 149: 349-358.
  • 86. Nebelsick, J., 1999b. Taphonomy of Clypeaster fragments: preservation and taphofacies. Lethaia, 32: 241-252.
  • 87. Nebelsick, J. H., 2008. Taphonomy of Recent Clypeaster: implications for fossilassemblages. In: Ausich, W. & Webster, G. (eds), Paleobiology of Echinoderms. Indiana UniversityPress, Bloomington, pp. 114-128.
  • 88. Nebelsick, J. H., Schmid, B. & Stachowitsch, M., 1997. The encrustation of fossil and recent sea-urchin tests: ecological and taphonomic significance. Lethaia, 30: 271-284.
  • 89. Oji, T., Ogawa, C. & Sato, T., 2003. Increase of shell-crushing predation recorded in fossil shell fragmentation. Paleobiology, 29: 520-526.
  • 90. Olszewska-Nejbert, D., 2007. Late Cretaceous (Turonian-Coniacian) irregul ar echinoids of western Kazakhstan (Mangyshlak) and southern Poland (Opole). Acta Geologica Polonica, 57: 1-87.
  • 91. Palmer, T., 1982. Cambrian to Cretaceous changes in hardground communities. Lethaia, 15: 309-323.
  • 92. Payne, J. L., Boyer, A. G., Brown, J. H., Finnegan, S., Kowalewski, M., Krause, R. A., Lyons, S. K., McClain, C. R., McShea, D. W., Novack-Gottshall, P. M., Smith, F. A., Stem- pien, J. A. & Wang, S. C., 2009. Two-phase increase in the maximum size of lifeover 3.5 billion years reflects biological innovation and environmental opportunity. Proceedings of the National Academy of Sciences USA, 106: 24-27.
  • 93. Peters, S. E. & Heim, N. A., 2010. The geological completeness of paleontological sampling in North America. Paleobiology, 36: 61-79.
  • 94. Philippe, M., 1983. Déformation d’une scutelle (Echinoidea, Clypeastroida) Miocène due à la fixation d’une balane. Hypothèse paléoécologique. Geobios, 16: 371-374.
  • 95. Powell, M. G. & Kowalewski, M., 2002. Increase in evenness and sampled alpha diversity through the Phanerozoic: comparison of early Paleozoic and Cenozoic marine fossil assemblages. Geology, 30: 331-334.
  • 96. Powers, C. M. & Bottjer, D. J., 2007. Bryozoan paleoecology indicates mid-Phanerozoic extinctions were the product of longterm environmental stress. Geology, 35: 995-998.
  • 97. Raup, D. M., 1972. Taxonomic diversity during the Phanerozoic. Science, 177: 1065-1071.
  • 98. Rodland, D. L., Kowalewski, M., Carroll, M. & Simoes, M. G., 2004. Colonization of a ‘Lost World’: encrustation patterns in modern subtropical brachiopod assemblages. Palaios, 19: 381-395.
  • 99. Rose, E. P. F. & Cross, N. F., 1993. The chalk sea urchin Micraster: microevolution, adaptation and predation. Geology Today, 5: 179-186.
  • 100. Salamon, M. A. & Niedzwiedzki, R., 2003. Triassic echinoids from the Holy Cross Mountains. Freiberger Forschungshefte, Paläontologie, Stratigraphie, Fazies, 11: 35-42.
  • 101. Santos, A. G. & Mayoral, E. J., 2008. Colonization by barnacles on fossil Clypeaster: an exceptional example of larval settlement. Lethaia, 41: 317-332.
  • 102. Schmid, F., 1949. Orientierte Anheftung von Ostrea vesicularis Lamarck, Dimyodon nilssoni Hagenow und Crania parisiensis Defrance. Mitteilungen aus demgeologischen Staatsinstitut Hamburg, 19: 53-66.
  • 103. Schneider, C. L., 2003. Hitchhiking on Pennsylvanian echinoids: epibionts on Archaeocidaris. Palaios, 18: 435-444.
  • 104. Schneider, C. L., Sprinkle, J. & Ryder, D., 2005. Pennsylvanian (Late Carboniferous) echinoids from the Winchell Formation, north-central Texas, USA. Journal of Paleontology, 79: 745-762.
  • 105. Schubert, J. K., Kidder, D. L. & Erwin, D. H., 1997. Silica-rei placed fossils through the Phanerozoic. Geology, 25: 1031-1034.
  • 106. Seilacher, A., 1979. Constructional morphology of sand doliars. Paleobiology, 5: 191-221.
  • 107. Sepkoski, J. J., 1981. A facior anaiytic description of the Phanerozoic marine fossil record. Paleobiology, 7: 36-53.
  • 108. Sepkoski, J. J., 1993. Limits to randomness in paleobiologic models: the case of Phanerozoic species diversity. Acta Palaeontologica Polonica, 38: 175-198.
  • 109. Sessa, J. A., Patzkowsky, M. E. & Bralower, T. J., 2009. The impact of lithification on the diversity, size distribution, and recovery dynamics of marine invertebrate assemblages. Geology, 37: 115-118.
  • 110. Sheehan, P. M., 1977. Species diversity in the Phanerozoic - a reflection of labor by systematists? Paleobiology, 3: 325-328.
  • 111. Signor, P. W., 1982. Species richness in the Phanerozoic: compensating for sampling bias. Geology, 10: 625-628.
  • 112. Smith, A. B., 1984. Echinoid Palaeobiology. George Allen & Unwin, London, 190 pp.
  • 113. Smith, A. B., 1992. Echinoid distribution in the Cenomanian: an analytical study in biogeography. Palaeogeography, Palaeo- climatology, Palaeoecology, 92: 263-276.
  • 114. Smith, A. B., 2001. Large scale heterogeneity of the fossil record: implications for biodiversity studies. Philosophical Transactions of the Royal Society B, 356: 351-367.
  • 115. Smith, A. B., 2005. Growth and form in echinoids: the evolutionary interplay of plate accretion versus plate addition. In: Briggs, D. E. G. (ed.), Evolving Form and Function -Fossils and Development. Yale University Press, New Haven, pp. 181-194.
  • 116. Smith, A. B., 2007a. Intrinsic versus extrinsic biases in the fossil record: contrasting the fossil record of echinoids in the Triassic and early Jurassic using sampling data, phylogenetic analysis and molecular clocks. Paleobiology, 33: 310-323.
  • 117. Smith, A. B., 2007b. Marine diversity through the Phanerozoic: problems and prospects. Journal of the Geological Society, 164: 731-745.
  • 118. Smith, A. B. & Hollingworth, N. T. J., 1990. Tooth structure and phylogeny of the Upper Permian echinoid Miocidaris keyserlingi. Proceedings of the Yorkshire Geological Society, 48: 47-60.
  • 119. Smith, A. B. & Jeffery, C. H., 1998. Selectivity of extinction among sea-urchins at the end Cretaceous period. Nature, 392: 69-71.
  • 120. Smith, A. B. & Savill, J. J., 2001. Bromidechinus, a new Ordovician echinozoan (Echinodermata), and its bearing on the early history of echinoids. Transactions of the Royal Society of Edinburgh, Earth Sciences, 92: 137-147.
  • 121. Smith, A. B., Gale, A. S. & Monks, N. E. A., 2001. Sea-level change and rock record bias in the Cretaceous: a problem for extinction and biodiversity studies. Paleobiology, 27: 241-253.
  • 122. Smith, A. B. & McGowan, A. J., 2007. The shape of the Phane- rozoic diversity curve. How much can be predicted from the sedimentary rock record of western Europe? Palaeontology, 50: 765-777.
  • 123. Smith, A. B. & Stockley, B., 2005. The geological history of deep sea colonization by echinoids: the roles of surface productive-ity and deep-water ventilation. Proceedingsof the Royal Society of London B, 272: 865-869.
  • 124. Sprinkle, J. & Guensburg, T. E., 2004. Crinozoan, blastozoan, echinozoan, asterozoan, and homalozoan echinoderms. In: Webby, B. D., Droser, M. L., Paris, F. & Percival, I.(eds), The Great Ordovician Biodiversification Event. Columbia University Press, New York, pp. 266-280.
  • 125. Taylor, P. D., 2008. Seawaler chemislry, biomineralization and the fossil record of calcareous organisms. - In: Okada, H., Mawatari, S. F., Suzuki, N. & Gautam, P., (eds), Origin and Evolution of Natural Diversity, Proceedings of International Symposium “The Origin and Evolution of Natural Diversity”, Hokkaido University, Sapporo, pp. 21-29.
  • 126. Taylor, P. D. & Wilson, M. A., 2002. A new terminology for marine organisms inhabiting hard substrates. Palaios, 17: 522-525.
  • 127. Taylor, P. D. & Wilson, M. A., 2003. Palaeoecology and evolution of marine hard substrate communities. Earth-Science Reviews, 62: 1-103.
  • 128. Trammer, J., 2005. Maximum body size in a radiating clade as a function of time. Evolution, 59: 941-947.
  • 129. Trammer, J. & Kaim, A., 1997. Body size and diversity exemplified by three trilobite clades. Acta Palaeontologica Polonica, 42: 1-12.
  • 130. Vermeij, G. J., 1977. The Mesozoic marine revolution: evidence from snails, predators, and grazers. Paleobiology, 3: 245-258.
  • 131. Vermeij, G. J., 1995. Economics, volcanoes, and Phanerozoic revolutions. Paleobiology, 21: 125-152.
  • 132. Vermeij, G. J., 2004. Nature: an economic history, Princeton University Press, Princeton, pp. 445.
  • 133. Villier, L. & Eble, G. J., 2004. Assessing the robustness of disparity estimates: the impact of morphometric scheme, temporal scale and taxonomic level in spatangoid echinoids. Paleobiology, 30: 652-665.
  • 134. Villier, L. & Navarro, N., 2004. Biodiversity dynamics and their driving factors during the Cretaceous diversification of Spatangoida (Echinoidea, Echinodermata). Palaeogeography, Palaeoclimatology, Palaeoecology, 214: 265-282.
  • 135. Wahl, M., 1989. Marine epibiosis. I. Fouling and antifouling: some basic aspects. Marine Ecology Progress Series, 58: 175-189.
  • 136. Wall, P. D., Ivany, L. C. & Wilkinson, B. H., 2009. Revisiting Raup: exploring the influence of outcrop area on diversity in light of modern sample-standardization techniques. Paleobiology, 35: 149-170.
  • 137. Webby, B. D., Droser, M. L., Paris, F. & Percival, I., 2004. The Great Ordovician Biodiversification Event. Columbia University Press, New York, 496 pp.
  • 138. Weisbord, N. E., 1971. Bibliography of Cenozoic Echinoidea including some Mesozoic and Paleozoic titles. Bulletins of American Paleontology, 59: 1-314.
  • 139. Westrop, S. R. & Adrain, J. M., 2001. Sampling at the species level: impact of spatial biases on diversity gradients. Geology, 29: 903-906.
  • 140. Wilson, M. A., 2008. An online bibliography of bioerosion references. In: Wisshak, M. & Tapanila, L. (eds), Current Developments in Bioerosion. Erlangen Earth Conference Series, Springer, Berlin, Heidelberg, pp. 473-478.
  • 141. Wilson, M. A. & Palmer, T. J., 1992. Hardgrounds and Hard- ground Faunas. University of Wales, Aberystwyth, Institute of Earth Studies Publications 9: 1-131.
  • 142. Wood, R. A., 1993. Nutrients, predation and the history of reefbuilding. Palaios, 8: 526-543.
  • 143. Zamora, S., Mayoral, E., Gamez Vintaned, J. A., Bajo, S. & Espilez, E., 2008. The infaunal echinoid Micraster: taphonomic pathways indicated by sclerozoan trace and body fossils from the Upper Cretaceous of northern Spain. Geobios, 41: 15-29.
  • 144. Zapalski, M. K., 2011. Is absence of proof a proof of absence? Comments on commensalism. Palaeogeography, Palaeoclimatology, Palaeoecology, 302: 484-488.
  • 145. Zatoń, M. & Borszcz, T., 2012. Encrustation patterns on post-extinction early Famennian (Late Devonian) brachiopods from Russia. Historical Biology, 2012.658387
  • 146. Zhuravlev, A. Yu. & Wood, R. A., 2008. Eve of biomineralization: controls on carbonate mineralogy. Geology, 36: 923-926.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.