PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on flux decline in nanofiltration of lactic acid solutions with ZRIV/PAA membranes application

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The efficiency of lactic acid solutions nanofiltration with dynamically formed zirconium (IV) hydrous oxide polyacrylate (ZrIV/PAA) membranes application were considered in this paper. The results of investigations on flux decline in nanofiltration of lactic acid solutions under conditions resulting in low and high lactic acid rejection are reported. In the long term experimental research on pressure driven membrane processes the main reason of permeate flux reduction is an accumulation of concentration polarization and fouling effects. The experimental permeate flux versus time curves were analyzed in the frame of resistance-in-series model with the aim to develop the characteristic fouling and concentration polarization resistances. The analysis of experimental data and results of calculations showed that both: concentration polarization and fouling phenomena in investigated system depend on hydrodynamic conditions and properties of filtered solutions and (ZrIV/PAA) membrane.
Rocznik
Strony
17--21
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
autor
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Chemical Engineering and Environmental Protection Institute, al. Piastów 42, 71-065 Szczecin, Poland, ewa.polom@zut.edu.pl
Bibliografia
  • 1. Parajo, J.C., Alonso, J.L. & Santos, V. (1996). Lactic acid from wood. Proc. Biochem. 31, 271-280. DOI: 10.1016/0032-9592(95)00059-3.
  • 2. Turkson, A.K., Mikhlin, J.A. & Weber, M.E. (1984). Dynamic membranes for ultrafiltration. J. Coll. Inter. Sci. 101, 583-586. DOI: 10.1016/0021-9797(84)90072-9.
  • 3. Pessoa de Amorim, M.T. & Ramos Afonso I.R. (2006). Control of irreversible fouling by application of dynamic membranes. Desalination. 192, 63-67. DOI: 10.1016/jdesal.2005.10.011.
  • 4. Polom, E. & Szaniawska, D. (2006). Rejection of lactic acid solutions by dynamically formed nanofiltration membranes using a statistical design method. Desalination 198, 208-214. DOI: 10.1016/j.desal.2006.04.002.
  • 5. Polom, E. (2004). Research on nanofiltration process of lactic acid solutions. Unpublished doctoral dissertation, Technical University of Szczecin, Szczecin, Poland.
  • 6. Gao, W., Liang, H., Ma, J., Han, M., Chen, Z., Han, Z. & Li, G. (2011). Membrane fouling control in ultrafiltration technology for drinking water production: A review. Desalination 272, 1-8. DOI: 10.1016/j.desal.2011.01.051.
  • 7. Shi X., Tal G., Hankins Nicolas P., Gitis V. (2014). Fouling and cleaning of ultrafiltration membranes: A review. J. Water Proc. Engine. 1, 121-138. DOI: 10.101/j.jwpe.2014.04.003.
  • 8. Hoek, E. & Elimelech, M. (2003). Cake - Enchanced Concentration Polarization: A New fouling mechanism for Salt- Rejecting Membranes. Environ. Sci. Technol. 37, 5581-5588. DOI: 10.1021/es0262636.
  • 9. Konieczny, K. (2002). Modelling of membrane filtration of natural water for potable purposes. Desalination 143, 123-139. DOI: 10.1016/S0011-9164(02)00234-5.
  • 10. Rajca, M., Bodzek, M. & Konieczny, K. (2009), Application of mathematical models to the calculation of ultrafiltration flux in water treatment. Desalination 239, 100-110. DOI: 10.1016/j.desal.2008.03.010.
  • 11. Konieczny K., Rajca M., Bodzek M., Kwiecińska A., (2009). Water treatment using hybrid method of coagulation and low-pressure membrane filtration. Environ. Prot. Eng. 35, 5-23. DOI: 10.5277/epel40407.
  • 12. Linares, R.V., Yangali-Quintanilla, V., Li, Z., Amy, G. (2011). Rejection of micropollutants by clean and fouled forward osmosis membrane. Water Res. 45, 6737-6744, DOI: 10.1016/j.waters.2011.10.37.
  • 13. Polom, E. & Szaniawska, D. (2003). Optimization of nanofiltration process of lactic acid solutions employing statistical experimental design. Environ. Prot. Eng. 29, 69-81, DOI: 10.5277/epe.
  • 14. Tanny, G.B. & Johnson, J.S. (1978). The Structure of Hydrous Zr(IV) Oxide-Polyacrylate Membranes: Poly(acrylic Acid) Deposition. J. Appl. Polym. Sci. 22, 289-287. DOI: 10.1002/app.1978.070220121.
  • 15. Ozari, Y., Tanny, G. & Jagur-Grodziński, J. (1977) Dynamic Deposition of Polyacids on Porous Membrane Supports. J. Appl. Polym. Sci. 21, 555-572. DOI: 10.1002/app.1977.070210221
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6e21a359-a8a3-4531-bec7-8b82c17f9fc6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.