Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mathematical modeling of short pulsed laser irradiation in the cornea: a dual phase lag model

Treść / Zawartość
Warianty tytułu
Języki publikacji
A simple mathematical model for the temperature evolution in the cornea exposed to short-pulsed Ho: YAG laser under Laser Thermo Keratoplasty (LTK) treatment is developed by incorporating both the heat flux phase-lag and temperature gradient phase-lag in Fourier’s heat transfer model. An analytical solution to the mathematical model is obtained using the Laplace transformation technique. The computational results for the temperature profile and the temperature variation with time are presented through the graphs. The effect of some typical parameters: the heat flux phase-lag and the temperature gradient phase-lag on the temperature distribution and temperature variations are illustrated and discussed.
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
  • Department of Mathematics, Harcourt Butler Technical University Kanpur 208002, India
  • Department of Mathematics, Harcourt Butler Technical University Kanpur 208002, India
  • [1] Hobiny, A.D., & Abbas, I.A. (2018). Theoretical analysis of thermal damages in skin tissue in duced by intense moving heat source. International Journal of Heat and Mass Transfer, 124, 1011-1014.
  • [2] Alzahrani, F.S., & Abbas, I.A. (2019). Analytical estimations of temperature in a living tissue generated by laser irradiation using experimental data. Journal of Thermal Biology, 85, 10241.
  • [3] Abbas, I., Hobiny, A., & Alzahrani, F. (2019). An analytical solution of the bioheat model in a spherical tissue due to laser irradiation. Indian J. Phys., DOI: 10.1007/s12648-019-01581-w.
  • [4] Hobiny, A., & Abbas, I. (2019). Thermal response of cylindrical tissue induced by laser irradiation with experimental study. International Journal of Numerical Methods for Heat & Fluid Flow, 30(8), 4013-4023, DOI: 10.1108/HFF-10-2019-0777.
  • [5] Ghanmi, A., & Abbas, I.A. (2019). An analytical study on the fractional transient heating within the skin tissue during the thermal therapy. Journal of Thermal Biology, 82, 229-233.
  • [6] Hobiny, A., & Abbas, I. (2019). Analytical solutions of fractional bioheat model in a spherical tissue. An International Journal of Mechanics Based Design of Structures and Machines, DOI: 10.1080/15397734.2019.1702055.
  • [7] Hobiny, A., Alzahrani, F., Abbas, I., & Marin, M. (2020). The effect of fractional time derivative of bioheat model in skin tissue induced to laser irradiation. Symmetry, 12, 602, DOI: 10.3390/sym12040602.
  • [8] Hobiny, A.D., & Abbas, I.A. (2020). Nonlinear analysis of dual-phase lag bio-heat model in living tissues induced by laser irradiation. Journal of Thermal Stresses, 43(4), 503-511.
  • [9] Brinkmann, R., Koop, N., Droege, G., Grotehusmann, U., Huber, A., Bringruber, R. (1994). Investigations on Laser Therokerato-plasty. Laser Applications in Opthalmology, Proc. SPIE, 2079, 120-130.
  • [10] Ooi, E.H. & Ng, E.Y.K. (2009). Ocular temperature distribution: A mathematical perspective. Journal of Mechanics in Medicine and Biology, 9, 199-227.
  • [11] Mainster, M.A. (1979). Ophthalmic applications of infrared lasers – thermal considerations. Invest. Ophthalmol. Vis. Sci., 18, 414-420.
  • [12] Rahbar, S., & Shokooh-Saremi, M.S. (2018). Mathematical modeling of laser linear thermal effects on the anterior layer of the human eye. Optics and Laser Technology, 99, 72-80.
  • [13] Brinkmann, R., Radt, B., Flamm, C., Kampeier, J., Koop, N., & Bringruber, R. (2000). Influence of temperature and time on thermally induced forces in corneal collagen and the effect on laser thermo keratoplasty. J. Cataract Refractive Surg., 26(5), 744-754.
  • [14] Gokul, Kc., Adhikary, P.R., & Gurung, D.B. (2015). Mathematical Model: Comparative Study of Thermal Effects of Laser in Corneal Refractive Surgeries. Applications and Applied Mathematics, 10(1), 620-633.
  • [15] Gokul, Kc., Adhikary, P.R., & Gurung, D.B. (2014). Thermal effects of eyelid in human eye temperature. Journal of Applied Mathematics and Informatics, 32, 649-663.
  • [16] Manns, F., Borja, D., & Parel, J.M. (2002). Calculation of corneal temperature and shrinkage during laser thermo keratoplasty (LTK), in: F. Manns, P.G. Soderberg, A. Ho (Eds.). Ophthalmic Technologies XII. Proceedings of the SPIE, 4611, 101-109.
  • [17] Manns, F., Borja, D., Parel, J.M., & Smiddy, W. (2003). Semianalytical thermal model for subablative laser heating of homogeneous nonperfused biological tissue: application to laser thermos keratoplasty. J. Biomed. Opt., 8(2), 288-297.
  • [18] Ortueta, D.D., Magnago, T., Triefenbach, N., Mosquera, S.A., Sauer, U., & Brunsmann, U. (2012). In vivo measurement of thermal load during ablation in high speed laser corneal refractive surgery. J. Refract. Surgery, 28, 53-58.
  • [19] Shibib, K.S. (2013). Finite element analysis of cornea thermal damage due to pulse incidental far IR laser. Lasers Med. Sci., 28, 871-877.
  • [20] Gheitaghy, A.M., Takabi, B. & Alizadeh, M. (2014). Modeling of ultrashort pulsed laser irradiation in the cornea based on parabolic and hyperbolic heat equations using electrical analogy. International Journal of Modern Physics C, 25(9), 1450039-1-1450039-17.
  • [21] Narasimhan, A., & Sadasivam, S. (2013). Non-Fourier bioheat transfer modelling of thermal damage during retinal laser irradiation. Int. J. Heat and Mass Transf., 60, 591-597.
  • [22] Pennes, H.H. (1948). Analysis of tissue and arterial blood temperature in the resting forearm. J. Appl. Physiol., 1, 93-122.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.