Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cryptographically Strong Elliptic Curves of Prime Order

Treść / Zawartość
Warianty tytułu
Języki publikacji
The purpose of this paper is to generate cryptographically strong elliptic curves over prime fields Fp, where p is a Mersenne prime, one of the special primes or a random prime. We search for elliptic curves which orders are also prime numbers. The cryptographically strong elliptic curves are those for which the discrete logarithm problem is computationally hard. The required mathematical conditions are formulated in terms of parameters characterizing the elliptic curves. We present an algorithm to generate such curves. Examples of elliptic curves of prime order are generated with Magma.
  • Military Communication Institute, National Research Institute, Warszawska 22A, 05-130 Zegrze, Poland
  • Military Communication Institute, National Research Institute, Warszawska 22A, 05-130 Zegrze, Poland
  • Military Communication Institute, National Research Institute, Warszawska 22A, 05-130 Zegrze, Poland
  • [1] Daniel J. Bernstein and Tanja Lange. SafeCurves: choosing safe curves for elliptic curve cryptography, 2015. (accessed 27 September 2015).
  • [2] I. Blake, G. Serroussi, N. Smart. Elliptic curves in cryptography. Cambridge University Press, 1999.
  • [3] H. Cohen. A course in computational number theory. Springer 1983.
  • [4] H. Cohen, G. Frey. Handbook of Elliptic and Hyperelliptic Curve Cryptography. Chapman and Hall CRC, 1994.
  • [5] P. Dąbrowski, R. Gliwa, J. Szmidt, R. Wicik. Generation and Implementation of Cryptographically Strong Elliptic Curves. Number-Theoretical Methods in Cryptology. First International Conference, NuTMiC 2017. Warsaw, Poland, 11-13, 2017. Lecture Notes in Computer Sciences, (Eds), Jerzy Kaczorowski, Josef Piprzyk, Jacek Pomykała. Volume 10737, pages 25-36. 2017.
  • [6] W. Diffie, M. E. Hellman. New Directions in Cryptography. IEEE Trans. Information Theory, IT 22(6), pp. 644-654, 1976.
  • [7] Jean-Pierre Flori, Jerome Plut, Jean-Rene Reinhard. Diversity and transparency for ECC. NIST Workshop on ECC Standards, June 11-12, 2015.
  • [8] Gerhard Frey, private communication, 2015.
  • [9] G. Frey, H. Rück. A remark concerning m-divisibility and the discrete logarithm in the divisor class group of curves. Mathematics of Computations, 62 91994, 865-874.
  • [10] S. D. Galbraith, P. Gaudry. Recent progress on the elliptic curve discrete logarithm problem. Cryptology ePrint Archive, 2015/1022.
  • [11] Steven D. Galbraith and James McKee. The probability that the number of points on an elliptic curve over a finite field is prime. J. London Math. Soc. (2), 62(3):671–684, 2000.
  • [12] R. Gliwa, J. Szmidt, R. Wicik Searching for cryptographically secure elliptic curves over prime fields Science and Military, 2016, nr 1, volume 11, pages 10-13, ISSN 1336-8885 (print), ISSN 2453-7632 (on-line).
  • [13] R. Granger, M. Scott. Faster ECC over F2521−1. In: Katz, J. ed., PKC 2015. LNCS, vol. 9020, pp. 539–553.
  • [14] D. Johnson, A. Menezes. The Elliptic Curve Digital Signature Algorithm (ECDSA). Technical Report CORR 99-34, University of Waterloo, Canada.
  • [15] Manfred Lochter and Andreas Wiemers. Twist insecurity, 2015. iacr. ePrint Archive 577 (2015).
  • [16] A. Menezes, T. Okamoto, S. Vanstone. Reducing elliptic curve logarithms to logarithms in a finite field. IEEE. Transactions on Information Theory, 39 (1993), 1639-1646.
  • [17] N. Koblitz. Elliptic curve cryptosystems. Math. Comp., 48(177), pp. 203-209, 1987.
  • [18] V. S. Miller. Use of elliptic curves in cryptography. In Advances in Cryptology - CRYPTO’85, LNCS vol 218, pp. 417-426, 1985.
  • [19] P. Pohlig, M. Hellman. An improved algorithm for computing logarithms over GF(p) and its cryptographic significance. IEEE Transaction on Information Theory, 24 (1979), 106-110.
  • [20] J. Pollard. Monte Carlo methods for index computations mod pn. Mathematics of Computations, 32 (1978), 918-924.
  • [21] R. L. Rivest, A. Shamir, L. Adleman. A method for obtaining digital signatures and public-key cryptosystems. Comm. ACM, 21(2), pp. 120- 126, 1978.
  • [22] T. Satoh, K. Araki. Fermat quotients and the polynomial time discrete log algorithm for anomalous elliptic curves, Commentarii Mathematici Universitatis Sancti Pauli, 47 (1998), 81-92.
  • [23] I. Semaev. Evaluation of discrete logarithms in a group of p-torsion points of an elliptic curve in characteristic p. Mathematics of Computations, 67 (1998), 353-356.
  • [24] N. Smart. The discrete logarithm problem on elliptic curves uf trace one. Journal of Cryptology, 12 (1999), 193-196.
  • [25] J. H. Silverman. The arithmetic of elliptic curves. Springer 1986.
  • [26] Elliptic Curve Cryptography (ECC) Brainpool Standard. Curves and Curve Generation, v. 1.0. 2005. Request for Comments: 5639, 2010. 7027, 2013.
  • [27] Technical and Implementation Guidance on Generation and Application of Elliptic Curves for NATO classified, 2010.
  • [28] US Department of Commerce. N.I.S.T. 2000. Federal Information Processing Standards Publication 186-2. FIPS 186-2. Digital Signature Standard.
  • [29] Standards for Efficient Cryptography Group. Recommended elliptic curve domain parameters, 2000.
  • [30] Mersenne
  • [31] Magma Computational Algebra System. School of Mathematics and Statistics. University of Sydney.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.