Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-6ae03f95-a728-46af-8a3c-b825dc52c55c

Czasopismo

Inżynieria Powierzchni

Tytuł artykułu

Dobór parametrów procesu anodowego utleniania aluminium w celu zwiększenia szybkości wytwarzania powłok tlenkowych

Autorzy Tomassi, P.  Buczko, Z.  Olkowicz, K. 
Treść / Zawartość
Warianty tytułu
EN The influence of anodic oxidation parameters on the growth rate of oxide coatings on aluminium
Języki publikacji PL
Abstrakty
PL Wykonano badania porównawcze trzech opracowanych w IMP technologii anodowego utleniania aluminium pod kątem zwiększenia szybkości wytwarzania powłok tlenkowych. Zbadano grubość, mikrotwardość i jakość uszczelnienia otrzymanych powłok. Szybkość wytwarzania powłok tlenkowych wyniosła ok. 1 µm/min, a więc była ponad dwukrotnie wyższa od uzyskiwanej w konwencjonalnym procesie otrzymywania powłok ochronno-dekoracyjnych. Sformułowano wnioski na temat zakresu zastosowań poszczególnych procesów anodowego utleniania aluminium.
EN The aim of this work was to obtain high velocity of oxide coatings growth in the process of anodic oxidation of aluminium. Three different processes of oxidation were investigated. The coatings thickness, hardness and sealing quality were examined. The forming velocity of coatings was about 1 µm/min, much higher than obtained by conventional method of anodizing for anticorrosive purpose. The future scopes of application of elaborated processes were described.
Słowa kluczowe
PL anodowe utlenianie aluminium   powłoki tlenkowe  
EN anodic oxidation of aluminium   oxide coatings  
Wydawca Instytut Mechaniki Precyzyjnej
Czasopismo Inżynieria Powierzchni
Rocznik 2018
Tom nr 1
Strony 43--49
Opis fizyczny Bibliogr. 37 poz., rys., wykr., tab.
Twórcy
autor Tomassi, P.
  • Instytut Mechaniki Precyzyjnej, Warszawa
autor Buczko, Z.
  • Instytut Mechaniki Precyzyjnej, Warszawa
autor Olkowicz, K.
  • Instytut Mechaniki Precyzyjnej, Warszawa
Bibliografia
1. Akeret R., Bichsel H., Schwall E., Simon E., Textor M.: The Influence of chemical composition and fabrication procedures on the properties of anodized aluminium surfaces. „Transaction of the IMF” 1990, vol. 68, issue 1, p. 20–28.
2. Habazaki H., Shimizu K., Skeldon P., Thompson G.E., Wood G.C., Zhou X.: Effects of Alloying Elements in Anodizing of Aluminium. „Transaction of IMF” 1997, vol. 75, issue 1, p. 18–23.
3. Garcia-Vergara S.J., El Khazmi K., Skeldon P., Thompson G.E.: Influence of copper on the morphology of porous anodic alumina. „Corrosion Science” 2006, vol. 48, issue 10, p. 2937–2946.
4. Habazaki H., Zhou X., Shimizu K., Skeldon P., Thompson G.E., Wood G.C.: Mobility of copper ions in anodic alumina films. „Electrochimica Acta” 1997, vol. 42, issue 17, p. 2627–2635.
5. Cote J., Howlett E.E., Wheeler M.J., Lamb H.J.: The Behavior of Intermetallic Compounds in Aluminum During Sulfuric Acid Anodizing, Part 1: Al-Mn, Al-Fe, Al-Mg2Si, Al-Cr Alloys. „Plating” 1969, vol. 56, No. 4, p. 386–394.
6. Saenz de Miera M., Curioni M., Skeldon P., Thompson G.E.: Modelling the anodizing behaviour of aluminium alloys in sulphuric acid through alloy analogues. „Corrosion Science” 2008, vol. 50, issue 12, p. 3410–3415.
7. Kim H.S., Thompson G.E., Wood G.C., Wright I.G., Marringer R.E.: Electronoptical study of anodic film growth on rapidly solidified Al-Si based alloys. „Transaction of IMF” 1984, vol. 62, issue 1, p. 49–54.
8. Wang L., Nie X.: Silicon effects on formation of EPO oxide coatings on aluminum alloys. „Thin Solid Films” 2006, vol. 494, issues 1-2, p. 211–218.
9. Konieczny J., Dobrzański L.A., Labisz K., Duszczyk J.: The influence of cast method and anodizing parameters on structure and layer thickness of aluminium alloys. „Journal of Materials Processing Technology” 2004, 157–158, p. 718–723.
10. Fratila-Apachitei L.E., Duszczyk J., Katgerman L.: Voltage transients and morphology of AlSi(Cu) anodic oxide layers formed in H2SO4 at low temperature. „Surface and Coatings Technology” 2002, vol. 157, issue 1, p. 80–94.
11. Fratila-Apachitei L.E., Duszczyk J., Katgerman L.: Vickers microhardness of AlSi(Cu) anodic oxide layers formed in H2SO4 at low temperature. „Surface and Coatings Technology” 2003, vol. 165, issue 3, p. 309–315.
12. Fratila-Apachitei L.E., Tichelaar F.D., Thompson G.E., Terryn H., Skeldon P., Duszczyk J., Katgerman L.: A transmission electron microscopy study of hard anodic oxide layers on AlSi(Cu) alloys. „Electrochimica Acta” 2004, vol. 49, issue 19, p. 3169–3177.
13. Fratila-Apachitei L.E., De Graeve I., Apachitei I., Terryn H., Duszczyk J.: Electrode temperature evolution during anodic oxidation of AlSi(Cu) alloys studied in the wall-jet reactor. „Surface and Coatings Technology” 2006, vol. 200, issues 18-19, p. 5343–5353.
14. Fratila-Apachitei L.E., Duszczyk J., Katgerman L.: AlSi(Cu) anodic oxide layers formed in H2SO4 at low temperature using different current waveforms. „Surface and Coatings Technology” 2003, vol. 165, issue 3, p. 232–240.
15. Labisz K., Dobrzański L.A., Konieczny J.: Anodization of cast aluminium alloys produced by different casting methods. „Archives of Foundry Engineering” 2008, vol. 8, special issue 3, p. 45–50.
16. Thompson G.E., Zhang L., Smith C.J.E., Skeldon P.: Boric/Sulfuric Acid Anodizing of Aluminum Alloys 2024 and 7075: Film Growth and Corrosion Resistance. „Corrosion” 1999, vol. 55, issue 11, p. 1052–1061.
17. Spadafora J.S.: A comparison of sulfuric-boric acid anodize and chromic acid anodize processes. „Metal Finishing” 1994, issue 4, p. 53–57.
18. Zhang J., Zhao X., Zuo Y., Xiong J.: The bonding strength and corrosion resistance of aluminum alloy by anodizing treatment in a phosphoric acid modified boric acid/sulfuric acid bath. „Surface and Coatings Technology” 2008, vol. 202, issue 14, p. 3149–3156.
19. Critchlow G.W., Yendall K.A., Bahrani D., Quinn A., Andrews F.: Strategies for the replacement of chromic acid anodising for the structural bonding of aluminium alloys. „International Journal of Adhesion and Adhesives” 2006, vol. 26, issue 6, p. 419–453.
20. Bockmair G.: Flying free. Non-chromate(VI) surface protection is now possible for aircraft maintenance. „European Coating Journal” 2009, 7, p. 46–50.
21. Saeedikhani M., Javidi M., Yazdani A.: Anodizing of 2024-T3 aluminum alloy in sulfuric-boric-phosphoric acids and its corrosion behavior. „Transactions Nonferrous Metal Society of China” 2013, vol. 23, issue 9, p. 2551–2559.
22. Rasmussen J., Bradford D.: Capability study of surface roughness ring groove anodizing of automotive pistons. „Metal Finishing” 2003, vol. 101, issue 5, p. 9–10, 12, 14, 16.
23. Rasmussen J.: New insights into the microhardness of anodized aluminum. „Metal Finishing” 2001, vol. 99, issue 9, p. 46–48, 50–51.
24. Rasmussen J.: Method for anodizing objects.US Patent No. 7776198 (2010).
25. Yamamoto T.: Anodic oxide film. US Patent No. 7838120 (2010).
26. Rasmussen J.: Method and apparatus for anodizing objects. US Patent No. 6126808 (2000).
27. Jiang Z., Li S., Zeng J., Liao X., Yang D.: Analysis on the Anodic Oxide Film of Aluminum Pistons Formed in High Current Density and Wide Temperature Range. „Advanced Materials Research” 2011, vols.189–193, p. 507–511.
28. Wang Y., Tung S.C.: Scuffing and wear behavior of aluminum piston skirt coatings against aluminum cylinder bore. „Wear” 1999, vol. 225–229, Part 2, p. 1100–1108.
29. Li Y., Zheng M., Ma L., Shen W.: Fabrication of highly ordered nanoporous alumina films by stable high-field anodization. „Nanotechnology” 2006, vol. 17, No. 20, p. 5101–5105.
30. Li D., Jiang Ch., Jiang J., Ren X.: Investigation on highly ordered porous anodic alumina membranes formed by high electric field anodization. „Materials Chemistry and Physics” 2008, vol. 111, issue 1, p. 168–171.
31. Li X., Nie X., Wang L., Northwood D.O.: Corrosion protection properties of anodic oxide coatings on an Al-Si alloy. „Surface and Coatings Technology” 2005, vol. 200, issues 5–6, p. 1994–2000.
32. Ginder R.S., Hersam M.C., Lipson A.L.: Unique pore-formation geometries in anodized aluminum oxide. „Nanoscape” 2010, 7(1), p. 48–51.
33. Zaraska L., Sulka G.D., Jaskuła M.: The effect of n-alcohols on porous anodic alumina formed by self-organized two-step anodizing of aluminum in phosphoric acid. „Surface and Coatings Technology” 2010, vol. 204, issue 11, p. 1729–1737.
34. Bensalah W., Elleuch K., Feki M., Depetris-Wery M., Ayedi H.F.: Optimization of tartaric/sulphuric acid anodizing process using Doehlert design. „Surface and Coatings Technology” 2012, vol. 207, p. 123–129.
35. Garca-Rubio M., Ocon P., Climent-Font A., Smith R.W., Curioni M., Thompson G.E., Skeldon P., Lavia A., Garcia I.: Influence of molybdate species on the tartaric acid/sulphuric acid anodic films grown on AA2024 T3 aerospace alloy. „Corrosion Science” 2009, 51, issue 9, p. 2034–2042.
36. Schaedel F.C.: Sulfuric / Organic Electrolytes and total Quality Improvement (TQI) for Present/future Anodizing Requirements. „Products Finishing, NASF Surface Technology White Papers” 2017, 81(10), 1–17.
37. Tomassi P., Buczko Z.: Wydajność procesu anodowego utleniania aluminium. „Inżynieria Powierzchni” 2013, nr 1, s. 32–35.
Uwagi
PL Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-6ae03f95-a728-46af-8a3c-b825dc52c55c
Identyfikatory
DOI 10.5604/01.3001.0011.8030