Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-6a659f6c-6683-40f0-86c0-e35aa0d044ec

Czasopismo

Archiwum Fotogrametrii, Kartografii i Teledetekcji

Tytuł artykułu

Use of Gabor filters for texture classification of airborne images and LiDAR data

Autorzy Marmol, U. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN In this paper, a texture approach is presented for building and vegetation extraction from LIDAR and aerial images. The texture is very important attribute in many image analysis or computer vision applications. The procedures developed for texture problem can be subdivided into four categories: structural approach, statistical approach, model based approach and filter based approach. In this paper, different definitions of texture are described, but complete emphasis is given on filter based methods. Examples of filtering methods are Fourier transform, Gabor and wavelet transforms. Here, Gabor filter is studied and its implementation for texture analysis is explored. This approach is inspired by a multi-channel filtering theory for processing visual information in the human visual system. This theory holds that visual system decomposes the image into a number of filtered images of a specified frequency, amplitude and orientation. The main objective of the article is to use Gabor filters for automatic urban object and tree detection. The first step is a definition of Gabor filter parameters: frequency, standard deviation and orientation. By varying these parameters, a filter bank is obtained that covers the frequency domain almost completely. These filters are used to aerial images and LIDAR data. The filtered images that possess a significant information about analyzed objects are selected, and the rest are discarded. Then, an energy measure is defined on the filtered images in order to compute different texture features. The Gabor features are used to image segmentation using thresholding. The tests were performed using set of images containing very different landscapes: urban area and vegetation of varying configurations, sizes and shapes of objects. The performed studies revealed that textural algorithms have the ability to detect buildings and trees. This article is the attempt to use texture methods also to LIDAR data, resampling into regular grid cells. The obtained preliminary results are interesting.
Słowa kluczowe
PL analiza tekstury   LIDAR   algorytm   klasyfikacja automatyczna  
EN texture analysis   lidar   algorithm   automated classification  
Wydawca Zarząd Główny Stowarzyszenia Geodetów Polskich
Czasopismo Archiwum Fotogrametrii, Kartografii i Teledetekcji
Rocznik 2011
Tom Vol. 22
Strony 325--336
Opis fizyczny Bibliogr. 15 poz.
Twórcy
autor Marmol, U.
  • Department of Geoinformation, Photogrammetry and Remote Sensing of Environment, AGH University of Science and Technology Cracow, Poland, entice@agh.edu.pl
Bibliografia
Andrysiak T., Choras M., 2005. Image retrieval based on hierarchical Gabor filters. International Journal of Applied Mathematics and Computer Science, Vol. 15 (4), pp. 471-480.
Bovik A. C., Clark M., Geisler W. S., 1990. Multichannel texture analysis using localized spatial filters. IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol. 12 (1), pp. 55-73.
Chen C. H., Pau L. F.,Wang P. S. P. (eds.), 1998. The Handbook of Pattern Recognition and Computer Vision (2nd Edition), World Scientific Publishing Co.
Haralick R. M., 1979. Statistical and structural approaches to texture. Proceedings of IEEE, Vol. 67 (5), pp. 786-804.
Haralick, R. M., 1982. Image texture survey. Handbook of Statistics, ed. P. R. Krishnaich and L. N. Kanal, Vol.2, pp. 399-415. North Holland Pub Co.
Jain A., Farrokhnia F., 1991, Unsupervised texture segmentation using gabor filters. Pattern Recognition 24(12), pp. 1167-1186.
Jain A. K., Ratha N. K., Lakshmanan S., 1997. Object detection using Gabor filters. Pattern Recognition, Vol.30 (2), pp. 295-309.
Kruizinga P., Petkov N., Grigorescu S. E., 1999. Comparison of texture features based on Gabor filters. Proceedings of the 10th International Conference on Image Analysis and Processing, Venice, Italy, pp. 142-147.
Lu S., Hernandez J. E, Clark G. A., 1991. Texture segmentation by clustering of Gabor feature vectors. International Joint Conference on Neural Network, Seattle.
Movellan J. R., 2005. Tutorial on Gabor Filters. Tech. Rep., MPLab Tutorials, UCSD MPLab.
Petkov N., 1995. Biologically motivated computationally intensive approaches to image pattern recognition. Future Generation Computer Systems, Vol. 11, pp. 451-465.
Recio Recio J. A., Ruiz Fernández L. A., Fernández-Sarriá A., 2005. Use of Gabor filters for texture classification of digital image. Física de la Tierra 17, pp. 47-59.
Shapiro L. G., Stockman G. C., 2001. Computer Vision, Upper Saddle River, NJ: Prentice-Hall.
Wei H., Bartels M., 2006. Unsupervised segmentation using Gabor wavelets and statistical features in LIDAR data analysis. 18th International Conference on Pattern Recognition, pp. 667-670, Hong Kong.
Xu F., Niu X., Li R., 2003. An improved approach to automatic recognition of civil infrastructure objects. Annals of GIS Vol. 9 (1 & 2), pp. 78 – 89
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-6a659f6c-6683-40f0-86c0-e35aa0d044ec
Identyfikatory