Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-69b15094-089c-473c-9f2a-7b9d26d1b536

Czasopismo

International Journal of Electronics and Telecommunications

Tytuł artykułu

A Modified Signal Feed-Through Pulsed Flip-Flop for Low Power Applications

Autorzy Panahifar, E.  Hassanzadeh, A. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN In this paper a modified signal feed-through pulsed flip-flop has been presented for low power applications. Signal feed-through flip-flop uses a pass transistor to feed input data directly to the output. Feed through transistor and feedback signals have been modified for delay, static and dynamic power reduction. HSPICE simulation shows 22% reduction in leakage power and 8% of dynamic power. Delay has been reduced by 14% using TSMC 90nm technology parameters. The proposed pulsed flip-flop has the lowest PDP (Power Delay Product) among other pulsed flip-flops discussed.
Słowa kluczowe
EN low power   pulsed flip-flop   delay   leakage power   dynamic power  
Wydawca Polish Academy of Sciences, Committee of Electronics and Telecommunication
Czasopismo International Journal of Electronics and Telecommunications
Rocznik 2017
Tom Vol. 63, No. 3
Strony 241--246
Opis fizyczny Bibliogr. 20 poz., tab., wykr.
Twórcy
autor Panahifar, E.
autor Hassanzadeh, A.
Bibliografia
[1] H. Kawaguchi and T. Sakurai, "A reduced clock-swing flip-flop (RCSFF) for 63% power reduction," IEEE J. Solid-State Circuits, vol. 33, pp. 807–811, May 1998.
[2] R. Burd, U. Salim, F.Weber, L. DiGregorio, and D. Draper H. Partovi, "Flow-through latch and edge-triggered flip-flop hybrid elements," in IEEE Tech. Dig. ISSCC, pp. 138–139, 1996.
[3] F. Klass, "Semi-dynamic and dynamic flip-flops with embedded logic," in Symp. on VLSI Circuits, Dig. of Tech. Papers, pp. 108–109, June 1998.
[4] B. Nikolic et al., "Sense amplifier-based flip-flop," Int. Solid-State Circuits Conf., Dig. of Tech, pp. 282–283, Feb. 1999.
[5] M. Matsui et al., "A 200 MHz 13mm 2-D DCT macrocell using sense amplifying pipeline flip-flop scheme," IEEE J. Solid-State Circuits, vol. 29, pp. 1482–1490, 1994.
[6] D. De Caro, E. Napoli, and N. Petra A. G. M. Strollo, "A novel high speed sense-amplifier-based flip-flop," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 13, pp. pp. 1266–1274, Nov. 2005.
[7] C. Amir, A. Das, K. Aingaran, C. Truong, R.Wang, A. Mehta, R. Heald, and G.Yee F. Klass, "A new family of semi-dynamic and dynamic flip flops with embedded logic for high-performance processors," IEEE J. Solid-State Circuits, vol. 34, pp. 712-716, May 1999.
[8] G. Colon-Bonet, T. Fischer, R. Riedlinger, T. J. Sullivan, and T. Grutkowski S. D. Naffziger, "The implementation of the Itanium 2 microprocessor," IEEE J. Solid-State Circuits, vol. 37, pp. 1448–1460, Nov. 2002.
[9] S. Narendra, Z. Chen, S. Borkar, M. Sachdev, and V. De J. Tschanz, "Comparative delay and energy of single edge-triggered and dual edge triggered pulsed flip-flops for high-performance microprocessors," in Proc. ISPLED, pp. 207–212, 2001.
[10] S. Kim, and Y. Jun B. Kong, "Reduction, Conditional-capture flip-flop for statistical power," IEEE J. Solid-State Circuits, vol. 36, pp. 1263–1271, Aug. 2001.
[11] M. Aleksic, and V. G. Oklobdzija N. Nedovic, "Conditional precharge techniques for power-efficient dual-edge clocking," n Proc Int. Symp.Low-Power Electron. Design, Monterey, pp. 56–59, 2002.
[12] T. Darwish, and M. Bayoumi P. Zhao, "High-performance and low power conditional discharge flip-flop," IEEE Trans. Very Large Scale Integr. (VLSI) Systems, vol. 12, pp. 477–484, May 2004.
[13] M. Hamada, T. Fujita, H. Hara, N. Ikumi, and Y. Oowaki C. K. Teh, "Conditional data mapping flip-flops for low-power and high-performance systems," IEEE Trans. Very Large Scale Integr. (VLSI) Systems, vol. 14, pp. 1379–1383, Dec. 2006.
[14] J.-F. Lin, and M.-H. Sheu Y.-T. Hwang, "Low power pulse triggered flip-flop design with conditional pulse enhancement scheme," IEEE Trans. Very Large Scale Integr. (VLSI) Syst, vol. 20, pp. 361–366, Feb. 2012.
[15] Jin-Fa Lin, "Low-Power Pulse-Triggered Flip-Flop Design Based on a Signal Feed-Through," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22, pp. 181 - 185, 2014.
[16] D. Harris, Skew-Tolerant Circuit Design. San Francisco: CA: Morgan Kaufmann, 2001.
[17] S. Kozu et al., "A 100 MHz 0.4W RISC processor with 200 MHz multiply-adder, using pulseregister technique," Proc. IEEE Intl. Solid-State Circuits Conf, pp. 140–141, 1996.
[18] David Money Harris Neil H. E. Weste, CMOS VLSI Design:A Circuits and Systems Perspective, 4th ed.: Pearson Education , 2011.
[19] W.-L. Goh, and K.-S. Yeo M.-W. Phyu, "A low-power static dual edge triggered flip-flop using an output-controlled discharge configuration," in Proc. IEEE Int. Symp. Circuits Syst, pp. 2429–2432, May 2005.
[20] A. Khademzadeh, A. Afzali-Kusha, and M. Nourani S. H. Rasouli, "Low power single- and double-edge-triggered flip-flops for high speed applications," IEE Proc. Circuits Devices Syst., vol. 152, pp. 118–122, Apr. 2005.
Uwagi
PL Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-69b15094-089c-473c-9f2a-7b9d26d1b536
Identyfikatory
DOI 10.1515/eletel-2017-0032