Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button


Transactions of the Institute of Fluid-Flow Machinery

Tytuł artykułu

On an approach to the thermo-elasto-plastic failure based on the Burzynski criterion

Autorzy Banaś, K.  Badur, J. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN In this paper the comparison of material eort models: the classic Huber-Mises-Hencky approach and the Burzynski condition was presented. Burzynski yield condition is pressure sensitive and naturally takes into account the strength dierential eect, which has been observed in nickel-base super alloys such as Inconel 718. Investigation was performed during thermal-uidstructure interaction analysis of a power turbine guide vane of turbine helicopter engine PZL- 10W. Firstly, computational uid dynamics conjugate heat transfer analysis was carried out, then stress analysis was performed with boundary conditions obtained via computational uid dynamics analysis. During stress analysis, two mentioned above equivalent stress denitions were applied and dierence in material eort modelling by them was shown.
Słowa kluczowe
EN Burzynski stress   thermal-FSI   conjugate heat transfer   thermal stresses   turbine guide vane  
Wydawca Wydawnictwo Instytutu Maszyn Przepływowych PAN
Czasopismo Transactions of the Institute of Fluid-Flow Machinery
Rocznik 2017
Tom nr 136
Strony 65--76
Opis fizyczny Bibliogr. 34 poz., rys., tab.
autor Banaś, K.
  • Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland,
autor Badur, J.
  • Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
[1] Badur J., Karcz M., Kucharski R., Wisniewski A., Kekana M.: Coupled modelling of the cooling processes and the induced thermo-corrosive fatigue within a gas turbine. Cracow TU, 2003, 19-30.
[2] Badur J., Ziółkowski P., Sławiński D., Kornet S.: An approach for estimation of water wall degradation within pulverized-coal boilers. Energy 92(2015), 142-152.
[3] Banaszkiewicz M.: Numerical investigation of creep behaviour of high-temperature steam turbine components. Trans. Inst. Fluid-Flow Mach. 124(2012), 5-15.
[4] Banaś K., Badur J.: Infuence of turbulence RANS models on heat transfer coefficients and stress distribution during thermal-FSI analysis of power turbine guide vane of helicopter turbine engine PZL-10W taking into account convergence of heat flux. Progress in Computational Fluid Dynamics, 2017.
[5] Banaszkiewicz M.: Online determination of transient thermal stresses in critical steam turbine components using a two-step algorithm. J. Therm. Stresses 6(2017), 690-703.
[6] Banaszkiewicz M.: On-line monitoring and control of thermal stresses in steam turbine rotors. Appl. Therm. Eng. 94(2016), 763-776.
[7] Staroselsky A., Martin T.J., Cassenti B.: Transient thermal analysis and viscoplastic damage model for life prediction of turbine components. J. Eng. Gas Turb. Power 137(2015), 042501.
[8] Taler J., Weglowski B., Sobota T., Jaremkiewicz M., Taler D.: Inverse Space Marching Method for Determining Temperature and Stress Distributions in Pressure Components. In: Development in Heat Transfer (M.A.D.S. Bernardes, Ed.), In Tech, Rijeka 2011, ISBN: 978-953-307-569-3.
[9] Duda P.: Inverse Method for stress monitoring in pressure components of steam generators. In: Proc. 17th Int. Conf. on Structural Mechanics in Reactor Technology, 2003.
[10] Burzyński W.: Selected passages from Włodzimierz Burzynski's doctoral dissertation: Study of material effort hypotheses. Eng. Trans. 57(2009), 185-215.
[11] Spitzig W.A., Sober R.J, Richmond O.: Pressure dependence of yielding and associated volume expansion in tempered martensite. Acta Metallurgica 7(1975), 885-893.
[12] Spitzig W.A., Sober R.J., Richmond O.: The Effect of Hydrostatic Pressure on the Deformation Behavior of Maraging and HY-80 Steels and its Implications for Plasticity Theory. Metall. Trans. 11(1976), 377-386.
[13] Richmond O., Spitzig W.A.: Pressure dependence and dilatancy of plastic flow. In: Proc. IUTAM Conf., North-Holland, 1980, 377-386.
[14] Spitzig W.A., Richmond O.: The effect of pressure on the flow stress of metals. Acta Metallurgica 32(1984), 457-463.
[15] Wilson C.D.: A critical reexamination of classical metal plasticity. J. Appl Mech. 69(2002), 63-68.
[16] Iyer S.K., Lissenden C.J.: Multiaxial constitutive model accounting for the strengthdi erential in Inconel 718. Int. J. Plasticity 19(2003), 2055-2081.
[17] Bai Y., Wierzbicki T.: A new model of metal plasticity and fracture with pressure and Lode dependence. Int. J. Plast. 24(2008), 1071-1096.
[18] Vadillo G., Fernandez-Saez J., Pecherski R.B.: Some applications of Burzynski yield condition in metal plasticity. Mat. Des. 32(2011), 628-635.
[19] Gil C.M., Lissenden C.J., Lerch B.A.: Yield of Inconel 718 by axial-torsional loading at temperature up to 649 C. J. Test. Eval. 27(1999), 327-336.
[20] Pecherski R.B., Fras T., Nowak M.: Inelastic flow and failure of metallic solids. CISM Lectures, Udine, 2012.
[21] Marin J., Hu L.W.: On the validity of assumptions made in theories of plastic flow for metals. Trans. ASME 75(1953), 1181-1190.
[22] Hu L.W., Bratt J.F.: Effect of tensile plastic deformation on yield condition. J. Appl. Mech. 25(1958), 411.
[23] Hu L.W.: Plastic Stress-Strain Relations and Hydrostatic Stress. In: Proc. 2nd Symp. on Naval Structural Mechanics: Plasticity, Brown University, Rhode Island 1960, 194-201.
[24] Burzynski W.: Theoretical foundations of the hypotheses of material effort. Czasopismo Techniczne 47(1929), 141.
[25] Burzynski W.: Ueber die Anstrengungshypothesen. Schweiz Bauzeitung 94(1982), 259-262.
[26] Drucker D.C., Prager W.: Soil mechanics and plastic analysis for limit design. Quart. Appl. Math. 10(1952), 157-165.
[27] Lewandowski J.J., Wesseling P., Prabhu N.S., Larose J., Lerch B.A.: Strength differential measurements in IN 718: Effects of superimposed pressure. Metall. Mater. Trans. A 8(2003), 1736-1739.
[28] Raniecki B., Mroz Z.: Yield or martensitic phase transformation conditions and dissipation functions for isotropic, pressure-insensitive alloys exhibiting SD effect. Acta Mechanica 195(2008), 81-102.
[29] Sengoz K.: Development of A Generalized Isotropic Yield Surface for Pressure Insensitive Metal Plasticity Considering Yield Strength Differential Effect in Tension, Compression and Shear Stress States. Phd thesis, George Washington University, Washington DC 2017.
[30] Zyczkowski M.: Discontinuous bifurcations in the case of the Burzynski-Torre yield condition. Acta Mech. 132(1999), 19-35.
[31] Torre C.: Grenzbedingungen fur sproden Bruch und plastisches Verhalden bildsamer. Metall. Ing. Arch. 4(1950), 174-189.
[32] Brokaw R.S.: Viscosity of gas mixtures. NASA Tech. Note, D-4496 1968.
[33] Hongjun Z., Zhengping Z., Yu L., Jian Y., Songhe Y.: Conjugate heat transfer investigations of turbine vane based on transition models. Chinese J. Aeronaut. 26(2013), 890-897.
[34] Lin G., Kusterer K., Ayed A.H., Bohn D., Sugimoto T.: Conjugate heat transfer analysis of convection-cooled turbine vanes using
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-689e1b78-cc7b-4065-8875-d80ff8481b8e