Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-685a5087-a5ca-4974-ad2d-88945eea373d

Czasopismo

Optica Applicata

Tytuł artykułu

Spectral analysis of dynamic laser speckle patterns by using a full-field temporal modulation method

Autorzy Dake, W.  Chasteen, E.  Onyeuku, C. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN We introduce an approach for analyzing the power spectrum of the time-varying intensity in the dynamic laser speckle patterns. The method is free from the limitation imposed by the Nyquist criterion on the minimum sampling rate. The temporal modulation shifts the intensity fluctuation spectrum by an amount that is equal to the modulation frequency. The subsequent integration of the intensity signal, performed at each detector pixel, acts effectively as a low-pass filter allowing the extraction of the spectral component at the modulation frequency. Within the speed range from 1 to 10 mm/s investigated in our experiment, the result demonstrates that the moving speed of the diffuse object can be determined with a good accuracy.
Słowa kluczowe
EN laser speckle   spectral analysis   light scattering  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Optica Applicata
Rocznik 2013
Tom Vol. 43, nr 4
Strony 871--882
Opis fizyczny Bibliogr. 24 poz., rys., wykr.
Twórcy
autor Dake, W.
autor Chasteen, E.
autor Onyeuku, C.
Bibliografia
[1] BRIERS J.D., Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging, Physiological Measurement 22(4), 2001, pp. R35–R66.
[2] PENGCHENG LI, SONGLIN NI, LI ZHANG, SHAOQUN ZENG, QINGMING LUO, Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging, Optics Letters 31(12), 2006, pp. 1824–1826.
[3] WEBER B., BURGER C., WYSS M.T., VON SCHULTHESS G.K., SCHEFFOLD F., BUCK A., Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex, European Journal of Neuroscience 20(10), 2004, pp. 2664–2670.
[4] DURDURAN T., BURNETT M.G., GUOQIANG YU, CHAO ZHOU, DAISUKE FURUYA, YODH A.G., DETRE J.A., GREENBERG J.H., Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry, Journal of Cerebral Blood Flow and Metabolism 24(5), 2004, pp. 518–525.
[5] DUNN A.K., DEVOR A., BOLAY H., ANDERMANN M.L., MOSKOWITZ M.A., DALE A.M., BOAS D.A., Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation, Optics Letters 28(1), 2003, pp. 28–30.
[6] VÖLKER A.C., ZAKHAROV P., WEBER B., BUCK F., SCHEFFOLD F., Laser speckle imaging with an active noise reduction scheme, Optics Express 13(24), 2005, pp. 9782–9787.
[7] ZAKHAROV P., VÖLKER A.C., BUCK A., WEBER B., SCHEFFOLD F., Quantitative modeling of laser speckle imaging, Optics Letters 31(23), 2006, pp. 3465–3467.
[8] DUNCAN D.D., KIRKPATRICK S.J., Can laser speckle flowmetry be made a quantitative tool?, Journal of the Optical Society of America A 25(8), 2008, pp. 2088–2094.
[9] RAJAN V., VARGHESE B., VAN LEEUWEN T.G., STEENBERGEN W., Review of methodological developments in laser Doppler flowmetry, Lasers in Medical Science 24(2), 2009, pp. 269–283.
[10] LINDÉN M., Can blood flow in separate small tubes be quantitatively assessed by high-resolution laser Doppler imaging?, Medical and Biological Engineering and Computing 35(6), 1997, pp. 575–580.
[11] HUMEAU A., SAUMET J.L., L’HUILLIER J.P., Laser Doppler blood flowmetry multiple scattering study during reactive hyperaemia, Proceedings of SPIE 4163, 2000, pp. 9–17.
[12] JENTINK H.W., DE MUL F.F.M., HERMSEN R.G.A.M., GRAAFF R., GREVE J., Monte Carlo simulations of laser Doppler blood flow measurements in tissue, Applied Optics 29(16), 1990, pp. 2371–2381.
[13] FEKE G.T., RIVAT C.E., Laser Doppler measurements of blood velocity in human retinal vessels, Journal of the Optical Society of America 68(4), 1978, pp. 526–531.
[14] DÖRSCHEL K., MÜLLER G., Velocity resolved laser Doppler blood flow measurements in skin, Flow Measurement and Instrumentation 7(3–4), 1996, pp. 257–264.
[15] IMAI Y., TANAKA K., Direct velocity sensing of flow distribution based on low-coherence interferometry, Journal of the Optical Society of America A 16(8), 1999, pp. 2007–2012.
[16] BONNER R., NOSSAL R., Model for laser Doppler measurements of blood flow in tissue, Applied Optics 20(12), 1981, pp. 2097–2107.
[17] FITZAL F., VALENTINI D., WORSEG A., HOLLE J., REDI H., Evaluation of total vs. regional blood perfusion with a laser Doppler imaging system in the rat epigastric flap, Journal of Reconstructive Microsurgery 17(1), 2001, pp. 59–67.
[18] ABBISS J.B., CHUBB T.W., PIKE E.R., Laser Doppler anemometry, Optics and Laser Technology 6(6), 1974, pp. 249–261.
[19] ESSEX T.J.H., BYRNE P.O., A laser Doppler scanner for imaging blood flow in skin, Journal of Biomedical Engineering 13(3), 1991, pp. 189–194.
[20] FERRELL W.R., BALINT P.V., STURROCK R.D., Novel use of laser Doppler imaging for investigating epicondylitis, Rheumatology 39(11), 2000, pp. 1214–1217.
[21] CHOWDHURY D.P., SORENSEN C.M., TAYLOR T.W., MERKLIN J.F., LESTER T.W., Application of photon correlation spectroscopy to flowing Brownian motion systems, Applied Optics 23(22), 1984, pp. 4149–4154.
[22] WEBER R., SCHWEIGER G., Photon correlation spectroscopy on flowing polydisperse fluid-particle systems: theory, Applied Optics 37(18), 1998, pp. 4039–4050.
[23] MEYER W.V., SMART A.E., BROWN R.G.W., ANISIMOV M.A., Photon correlation and scattering: introduction to the feature issue, Applied Opticss 36(30), 1997, pp. 7477–7479.
[24] NARAYANAN T., CHEUNG C., TONG P., GOLDBURG W.I., WU X.L., Measurement of the velocity difference by photon correlation spectroscopy: an improved scheme, Applied Optics 36(30), 1997, pp. 7639–7644.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-685a5087-a5ca-4974-ad2d-88945eea373d
Identyfikatory
DOI 10.5277/oa130421