Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Full-order observers for linear fractional multi-order difference systems

Treść / Zawartość
Warianty tytułu
Języki publikacji
The paper is devoted to the construction of observers for linear fractional multi–order difference systems with Riemann–Liouville– and Grünwald–Letnikov–type operators. Basing on the Z-transform method the sufficient condition for the existence of the presented observers is established. The behaviour of the constructed observer is demonstrated in numerical examples.
Opis fizyczny
Bibliogr. 38 poz., wykr,
  • Faculty of Computer Science Bialystok University of Technology Wiejska 45A, 15-351 Białystok, Poland,
  • [1] L. Chen, W. Pan, R. Wu, and Y. He, “New result on finitetime stability of fractional-order nonlinear delayed systems”, Journal of Computational and Nonlinear Dynamics 10 (6), 5 pages (2015).
  • [2] J. Gabano and T. Poinot, “Fractional modelling and identification of thermal systems”, Signal Processing 91, 531–541 (2011).
  • [3] T. Kaczorek and P. Ostalczyk, “Responses comparison of the two discrete-time linear fractional state-space models”, Fractional Calculus and Applied Analysis 19 (4), 789–805, (2016).
  • [4] T. Kaczorek, “A new approach to the realization problem for fractional discrete-time linear systems”, Bull. Pol. Ac.: Tech. 64 (1), 9–14, 2016.
  • [5] T. Kaczorek, Selected Problems of Fractional Systems Theory, Springer, 2011.
  • [6] D. Mozyrska, E. Girejko, and M. Wyrwas, “Fractional nonlinear systems with sequential operators”, Central European Journal of Physics 11 (10), 1295–1303 (2013).
  • [7] D. Mozyrska and E. Pawluszewicz, “Local controllability of nonlinear discrete-time fractional order systems”, Bull. Pol. Ac.: Tech. 61 (1), 251–256 (2013).
  • [8] D. Mozyrska, E. Pawłuszewicz, and M.Wyrwas, “Local observability and controllability of nonlinear discrete-time fractional order systems based on their linearisation”, International Journal of Systems Science 48 (4), 788–794, 2017.
  • [9] D. Mozyrska and M. Wyrwas, “Fractional discrete-time of Hegselmann-Krause’s type consensus model with numerical simulations”, Neurocomputing 216, 381–392 (2016).
  • [10] P. Ostalczyk, Discrete Fractional Calculus: Applications in Control and Image Processing, Series in Computer Vision – Volume 4, World Scientific Publishing Co, Singapore, 2016.
  • [11] D. Sierociuk, T. Skovranek, M. Macias, I. Podlubny, I. Petras, A. Dzielinski, and P. Ziubinski, “Diffusion process modeling by using fractional-order models”, Applied Mathematics and Computation 257, 2–11 (2015)
  • [12] R. Stanisławski, M. Rydel, and K.J. Latawiec, “Modeling of discrete-time fractional-order state space systems using the balanced truncation method”, Journal of the Franklin Institute 354(7), 3008‒3020, (2017).
  • [13] A.A. Kilbas, H. M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North–Holland Mathematics Studies, 204. Elsevier Science B. V., Amsterdam, 2006.
  • [14] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego-Boston-New York-London-Tokyo-Toronto, 1999.
  • [15] K.S. Miller and B. Ross, “Fractional difference calculus”, In Proceedings of the International Symposium on Univalent Functions, Fractional Calculus and their Applications, pages 139–152, Kōriyama, Japan, 1988. Nihon University.
  • [16] T. Abdeljawad and F. M. Atıcı, “On the definitions of nabla fractional operators”, Abstract and Applied Analysis 2012, 13 pages (2012).
  • [17] F.M. Atıcı and P.W. Eloe, “Discrete fractional calculus with the nabla operator”, Electronic Journal of Qualitative Theory of Differential Equations Spec. Ed. I 2009 (3), 1–12 (2009).
  • [18] F. Chen, X. Luo, and Y. Zhou, “Existence results for nonlinear fractional difference equation”, Advances in Difference Equations 2011, 12 pages (2011).
  • [19] D. Mozyrska and E. Girejko, “Overview of the fractional h-difference operators”, In Frank-Olme Speck Alexandre Almeida, Luis Castro, editor, Operator Theory: Advances and Applications, volume 229, pages 253–267. Birkhäuser, 2013.
  • [20] M.D. Ortigueira, F.J.V. Coito, and J.J. Trujillo, “Discretetime differential systems”, Signal Processing 107, 198–217 (2015).
  • [21] S.R. Anderson and V. Kadirkamanathan, “Modelling and identification of nonlinear deterministic systems in deltadomain”, Automatica 43, 1859–1868 (2007).
  • [22] M. Boutayeb, M. Darouach, and H. Rafaralahy, “Generalized state-space observers for chaotic synchronization and secure communication”, IEEE Transactions on Circuits and Systems, I: Fundamental Theory and Applications 49 (3), 345–349 (2002).
  • [23] M. Darouach, M. Zasadzinski, and S. Xu, “Full-order observers for linear systems with unknown inputs”, IEEE Transactions on Automatic Control 39 (3), 606–609 (1994).
  • [24] A. Dzieliński and D. Sierociuk, “Observer for discrete fractional order state-space systems”, 2nd IFAC Workshop on Fractional Diffrentation and its Applications, IFAC FDA ’06, Portugal, 2006, 524–529.
  • [25] D. Sierociuk, “Estimation and control of discrete-time dybnamical fractional systems described in state space”, Ph.D. thesis, Warsaw University of Technology, Warsaw 2007.
  • [26] M. Wyrwas and D. Mozyrska, Theoretical Developments and Applications of Non-Integer Order Systems, In Stefan Domek and Paweł Dworak, editors, Lecture Notes in Electrical Engineering, volume 357, chapter: “Stability of linear discrete– time systems with fractional positive orders”, 157–166, Springer, 2015.
  • [27] R.A.C. Ferreira and D.F.M. Torres, “Fractional h-difference equations arising from the calculus of variations”, Applicable Analysis and Discrete Mathematics 5 (1), 110–121 (2011).
  • [28] N.R.O. Bastos, R.A.C. Ferreira, and D.F.M. Torres, “Discrete-time fractional variational problems”, Signal Processing 91 (3), 513–524 (2011).
  • [29] F.M. Atıcı and P.W.Eloe, “A transform method in discrete fractional calculus”, International Journal of Difference Equations 2, 165–176 (2007).
  • [30] D. Mozyrska and M. Wyrwas, “The Z-transform method and delta type fractional difference operators”, Discrete Dynamics in Nature and Society 2015, 12 pages (2015).
  • [31] M. Busłowicz, “Robust stability of positive discrete–time linear systems of fractional order”, Bull. Pol. Ac.: Tech. 58 (4), 567–572 (2010).
  • [32] M. Busłowicz and T. Kaczorek, “Simple conditions for practical stability of positive fractional discrete–time linear systems”, International Journal of Applied Mathematics and Computer Science 19 (2), 236–269 (2009).
  • [33] M. Busłowicz and A. Ruszewski, “Necessary and sufficient conditions for stability of fractional discrete-time linear statespace systems”, Bull. Pol. Ac.: Tech. 61 (4), 779–786 (2013).
  • [34] D. Sierociuk and A. Dzieliński, “Stability of discrete fractional order state–space systems”, Journal of Vibration and Control 14 (9‒10), 1543–1556 (2008).
  • [35] R. Stanisławski and K.J. Latawiec, “Stability analysis for discrete-time fractional-order LTI state-space systems. Part I: New necessary and sufficient conditions for the asymptotic stability”, Bull. Pol. Ac.: Tech. 61 (2), 353–361, (2013).
  • [36] R. Stanisławski and K.J. Latawiec, “Stability analysis for discrete-time fractional-order LTI state-space systems. Part II: New stability criterion for FD-based systems”, Bull. Pol. Ac.: Tech. 61 (2), 363–370, (2013).
  • [37] D. Mozyrska, “Multiparameter fractional difference linear control systems”, Discrete Dynamics in Nature and Society, 2014, 8 pages (2014).
  • [38] A. Dzieliński, D. Sierociuk, and G. Sarwas, “Some applications of fractional order calculus”, Bull. Pol. Ac.: Tech. 58 (4), 583–592 (2010).
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.