Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-67d429c9-1d79-47bc-bea9-cfd20bb44feb

Czasopismo

Oceanologia

Tytuł artykułu

Tracking trends in eutrophication based on pigments in recent coastal sediments

Autorzy Szymczak-Żyła, M.  Krajewska, M.  Winogradow, A.  Zaborska, A.  Breedveld, G. D.  Kowalewska, G. 
Treść / Zawartość http://www.iopan.gda.pl/oceanologia/ http://www.sciencedirect.com/journal/oceanologia
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Eutrophication in two different coastal areas – the Gulf of Gdańsk (southern Baltic) and the Oslofjord/Drammensfjord (Norway) – both subject to human pressure and with restricted water exchange with adjacent seas, was investigated and compared. Sediment cores (up to 20 cm long) were collected at 12 stations using a core sampler, 6 in each of the two areas, and divided into sub-samples. The physicochemical parameters characterizing the adjacent water column and near-bottom water, i.e. salinity, oxygen concentration and temperature, were measured during sample collection. Chlorophylls-a, -b and -c, their derivatives and selected carotenoids were determined for all the samples, as were additional parameters characterizing the sediments, i.e. Corg, Ntot, δ13C and δ15N, grain size.210Pb activity was also determined and on that basis sediment mixing and accumulation rates were estimated. The distribution of pigments in sediments was related to environmental conditions, the sampling site location and sediment characteristics. The results are in agreement with other observations that eutrophication in the Gulf of Gdańsk has increased, especially since the 1970s, whereas in the Oslofjord it decreased during the same period. The pigments are better preserved in inner Oslofjord sediments than in those from the Gulf of Gdańsk. The results demonstrate that the sum of chloropigments-a in sediments calculated per dry weight of sediments is a valuable measure of eutrophication, providing that the monitoring site is selected properly, i.e. sediments are hypoxic/anoxic and non-mixed. Besides, the results confirm previous observations that the percentages of particular chlorophyll-a derivatives in the sum of chloropigments-a are universal markers of environmental conditions in a basin. The ratios of chloropigments-b and chlorophylls-c to the sum of chloropigments-a (ΣChlns-b/ΣChlns-a; Chls-c/ΣChlns-a) may by applied as complementary markers of freshwater and marine organic matter input, respectively.
Słowa kluczowe
EN eutrophication   pigments   markers   sediments   Baltic Sea   Norwegian fjords  
Wydawca Polish Academy of Sciences, Institute of Oceanology
Elsevier
Czasopismo Oceanologia
Rocznik 2017
Tom No. 59 (1)
Strony 1--17
Opis fizyczny Bibliogr. 108 poz., mapy, tab., wykr.
Twórcy
autor Szymczak-Żyła, M.
autor Krajewska, M.
autor Winogradow, A.
autor Zaborska, A.
autor Breedveld, G. D.
autor Kowalewska, G.
Bibliografia
[1] Alve, E., 1991. Foraminifera, climatic change and pollution: a study of Late Holocene sediments in Drammensfjord, SE Norway. Holocene 1 (3), 243-261, http://dx.doi.org/10.1177/095968369100100306.
[2] Alve, E., 1995a. Benthic foraminiferal responses to estuarine pollution: a review. J. Foramin. Res. 25 (3), 190-203.
[3] Alve, E., 1995b. Benthic foraminiferal distribution and recolonization of formerly anoxic environments in Drammensfjord, southern Norway. Mar. Micropal. 25 (2-3), 169-186, http://dx.doi.org/ 10.1016/0377-8398(95)00007-N.
[4] Bellinger, E. G., Sigee, D. C., 2010. Freshwater Algae. Identification and Use as Bioindicators. Wiley-Blackwell, Hoboken, 271 pp.
[5] Bianchi, T. S., Baeur, J. E., Druffel, E. R. M., Lambert, C. D., 1998. Pyropheophorbide-a as a tracer of suspended particulate organic-matter from the NE Pacific continental margin. Deep-Sea Res. Pt. II 45 (4-5), 715-731, http://dx.doi.org/10.1016/S0967-0645 (97)00099-4.
[6] Bianchi, T. S., Canuel, E. A., 2011. Chemical Biomarkers in Aquatic Ecosystem. Princeton Univ. Press, 396 pp.
[7] Bianchi, T. S., Dawson, R., Sawangwong, P., 1988. The effects of macrobenthic deposit-feeding on the degradation of chloropigments in sandy sediments. J. Exp. Mar. Biol. Ecol. 122 (3), 243-255, http://dx.doi.org/10.1016/0022-0981(88)90126-8.
[8] Bianchi, T. S., Demetropoulos, A., Hadjichristophorou, M., Argyrou, M., Baskaran, M., Lambert, C., 1996. Plant pigments as biomarkers of organic matter sources in sediments and coastal waters of Cyprus (eastern Mediterranean). Estuar. Coast. Shelf Sci. 42 (1), 103-115, http://dx.doi.org/10.1006/ecss.1996.0008.
[9] Bianchi, T. S., DiMarco, S. F., Cowan, J. H., Hetland, R. D., Chapman, P., Day, J. W., Allison, M. A., 2010. The science of hypoxia in the Northern Gulf of Mexico: a review. Sci. Total Environ. 408 (7), 1471-1484, http://dx.doi.org/10.1016/j.scitotenv.2009.11.047.
[10] Bianchi, T. S., Engelhaupt, E., McKee, B. A., Miles, S., Elmgren, R., Hajdu, S., Savage, C., Baskaran, M., 2002a. Do sediments from coastal sites accurately reflect time trends in water column phytoplankton? A test from Himmerfjärden Bay (Baltic Sea proper). Limnol. Oceanogr. 47 (5), 1537-1544.
[11] Bianchi, T. S., Johansson, B., Elmgren, R., 2000. Breakdown of phytoplankton pigments in Baltic sediments: effects of anoxia and loss of deposit-feeding macrofauna. J. Exp. Mar. Biol. Ecol. 251 (2), 16-183, http://dx.doi.org/10.1016/S0022-0981(00)00212-4.
[12] Bianchi, T. S., Rolff, C., Lambert, C. D., 1997. Sources and composition of particulate organic carbon in the Baltic Sea: the use of plant pigments and lignin-phenols as biomarkers. Mar. Ecol. Prog. Ser. 156, 25-31.
[13] Bianchi, T. S., Rolff, C., Widbom, B., Elmgren, R., 2002b. Phytoplankton pigments in Baltic Sea seston and sediments: seasonal variability, fluxes, and transformations. Estuar. Coast. Shelf Sci. 55 (3), 369-383, http://dx.doi.org/10.1006/ecss.2001.0911.
[14] Bourgeois, S., Pruski, A. M., Sun, M.-Y., Buscail, R., Lantoine, F., Kerhervé, P., Vétion, G., Rivière, B., Charles, F., 2011. Distribution and lability of land-derived organic matter in the surface sediments of the Rhône prodelta and the adjacent shelf (Mediterranean Sea, France): a multi proxy study. Biogeosciences 8 (11), 3107-3125, http://dx.doi.org/10.5194/bg-8-3107-2011.
[15] Bucholc, K., Szymczak-Zyta, M., Lubecki, L., Zamojska, A., Hapter, P., Tjernström, E., Kowalewska, G., 2014. Nutrient content in macrophyta collected from southern Baltic Sea beaches in relation to eutrophication and biogas production. Sci. Total Environ. 473-474, 298-307, http://dx.doi.org/10.1016/j.scitotenv.2013.12.044.
[16] Canuel, E. A., Lerberg, E. J., Dickhut, R. M., Kuehl, S. A., Bianchi, T. S., Wakeham, S. G., 2009. Changes in sediment and organic carbon accumulation in a highly-disturbed ecosystem: The Sacramento-San Joaquin River Delta (California, USA). Mar. Pollut. Bull. 59 (4-7), 154-163, http://dx.doi.org/10.1016Zj.marpolbul.2009.03.025.
[17] Carpenter, S. R., Leavitt, P. R., Elser, J. J., Elser, M. M., 1988. Chlorophyll budgets: response to food web manipulation. Biogeochemistry 6 (2), 79-90.
[18] Chang, F. Y., Kao, S. J., Liu, K. K., 1991. Analysis of organic and carbonate carbon in sediments. Acta Oceanogr. Taiwan 27, 140-150.
[19] Chen, N., Bianchi, T. S., McKee, B. A., 2005. Early diagenesis of chloropigment biomarkers in the lower Mississippi River and Louisiana shelf: implications for carbon cycling in a river-dominated margin. Mar. Chem. 93 (2-4), 159-177, http://dx.doi.org/ 10.1016/j.marchem.2004.08.005.
[20] Chen, N., Bianchi, T. S., McKee, B. A., Bland, J. M., 2001. Historical trends of hypoxia on the Louisiana shelf: application of pigments as biomarkers. Org. Geochem. 32, 543-561.
[21] Conley, D. J., Björck, S., Bonsdorff, E., Carstensen, J., Destouni, G., Gustafsson, B. G., Hietanen, S., Kortekaas, M., Kuosa, H., Meier, H. E. M., Müller-Karulis, B., Nordberg, K., Norkko, A., Nürnberg, G., Pitkänen, H., Rabalais, N. N., Rosenberg, R., Savchuk, O. P., Slomp, C. P., Voss, M., Wulff, F., Zillén, L., 2009. Hypoxia-related processes in the Baltic Sea. Crit. Rev. 43 (10), 3412-3420, http:// dx.doi.org/10.1021/es802762a.
[22] Conley, D. J., Carstensen, J., Aigars, J., Axe, P., Bonsdorff, P., Eremina, T., Haahti, B.-M., Humborg, C., Jonsson, P., Kotta, J., Lannegren, C., Larsson, U., Maximov, A., Rodriguez Medina, M., Lysiak-Pastuszak, E., Remeikaitè-Nikienè, N., Waive, J., Wilhelms, S., Zillén, L., 2011. Hypoxia is increasing in the coastal zone of the Baltic Sea. Environ. Sci. Technol. 45 (16), 6777-6783, http://dx.doi.org/10.1021/es201212r.
[23] Cravotta III, C. A., 1997. Use of stable isotopes of carbon, nitrogen, and sulfur to identify sources of nitrogen in surface waters in the Lower Susquehanna River Basin, Pennsylvania. US Geological Survey Water Supply Paper 2497. 1-68.
[24] Dale, B., Thorsen, T. A., Fjelisa, A., 1999. Dinoflagellate cysts as indicators of cultural eutrophication in the Oslofjord, Norway. Estuar. Coast. Shelf Sci. 48 (3), 371-382, http://dx.doi.org/ 10.1006/ecss.1999.0427.
[25] Dixit, A. S., Hall, R. I., Leavitt, P. R., Quinlan, R., Smol, J. P., 2000. Effects of sequential depositional basins on lake response to urban and agricultural pollution: a palaeoecological analysis of the Qu'Appelle Valley, Saskatchewan, Canada. Freshwater Biol. 43 (3), 319-337, http://dx.doi.org/10.1046Zj.1365-2427.2000.00516.x.
[26] Dolven, J. K., Alve, E., 2010. Naturtilstanden i indre Oslofjord. Rapport No. 106. Inst. Geofag, UiO, 86 pp.
[27] Dolven, J. K., Alve, E., Rygg, B., Magnusson, J., 2013. Defining past ecological status and in situ reference conditions using benthic foraminifera: a case study from the Oslofjord, Norway. Ecol. Indic. 29, 219-233, http://dx.doi.org/10.1016/j.ecolind.2012.12.031.
[28] Edlund, M. B., Engstrom, D. R., Triplett, L. D., Lafrancois, B. M., Leavitt, P. R., 2009. Twentieth century eutrophication of the St. Croix River (Minnesota—Wisconsin, USA) reconstructed from the sediments of its natural impoundment. J. Paleolimnol. 41 (4), 641-657, http://dx.doi.org/10.1007/s10933-008-9296-1.
[29] Fleming-Lehtinen, V., Andersen, J. H., Carstensen, J., Lysiak-Pastuszak, E., Murray, C., Pyhala, M., Laamanen, M., 2015. Recent developments in assessment methodology reveal that the Baltic Sea eutrophication problem is expanding. Ecol. Indic. 48, 380-388, http://dx.doi.org/10.1016/j.ecolind.2014.08.022.
[30] Fontugne, M. R., Jouanneau, J. M., 1987. Modulation of the particulate organic carbon flux to the ocean by a macrotidal estuary — evidence from measurements of carbon isotopes in organic matter from the Gironde system. Estuar. Coast. Shelf Sci. 24 (3), 13-47, http://dx.doi.org/10.1016/0272-7714(87)90057-6.
[31] Goldberg, E. D., 1963. Geochronology with lead-210. In: Radioactive Dating. IAEA, Vienna, 121-131.
[32] Harmon, T. S., Smoak, J. M., Waters, M. N., Sanders, C. J., 2014. Hydrologic fragmentation-induced eutrophication in Dove Sound, Upper Florida Keys, USA. Environ. Earth Sci. 71 (10), 4387-4395, http://dx.doi.org/10.1007/s12665-013-2832-y.
[33] Harris, P. G., Zhao, M., Rosell-Melé, A., Tiedemann, R., Sarnthein, M., Maxwell, J. R., 1996. Chlorin accumulation rate as a proxy for quaternary marine primary productivity. Nature 383 (6595), 63-65, http://dx.doi.org/10.1038/383063a0.
[34] Head, E. J. H., Harris, L. R., 1996. Chlorophyll destruction by Calanus spp. grazing on phytoplankton: kinetics, effects of ingestion rate and feeding history, and a mechanistic interpretation. Mar. Ecol. Prog. Ser. 135 (1-3), 223-235.
[35] Hedges, J. I., Keil, R. G., 1995. Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar. Chem. 49 (2-3), 81-115, http://dx.doi.org/10.1016/0304-4203(95)00008-F.
[36] Hedges, J. I., Stern, J. H., 1984. Carbon and nitrogen determinations of carbonate containing solids. Limnol. Oceanogr. 29 (3), 657-663.
[37] HELCOM, 2007. Activities 2006. Overview. In: Baltic Sea Environment Proceedings No. 112.
[38] HELCOM, 2013. Climate change in the Baltic Sea Area HELCOM thematic assessment in 2013. In: Baltic Sea Environment Proceedings No. 137.
[39] Hess, S., Alve, E., Reuss, N. S., 2014. Benthic foraminiferal recovery in the Oslofjord (Norway): responses to capping and re-oxygenation. Estuar. Coast. Shelf Sci. 147, 87-102, http://dx.doi.org/ 10.1016/j.ecss.2014.05.012.
[40] Hodgson, D. A., Vyverman, W., Verleyen, E., Sabbe, K., Leavitt, P. R., Taton, A., Squier, A. H., Keely, B. J., 2004. Environmental factors influencing the pigment composition of in situ benthic microbial communities in east Antarctic lakes. Aquat. Microb. Ecol. 37 (3), 247-263.
[41] Huguet, C., Smittenberg, R. H., Boer, W., Sinninghe Danste, J. S., Schouetn, S., 2007. Twentieth century proxy records of temperature and soil organic matter input in the Drammensfjord, southern Norway. Org. Geochem. 38 (11), 1838-1849, http://dx.doi. org/10.1016/j.orggeochem.2007.06.015.
[42] HYPOX Report Summary, 2016. Final Report Summary — HYPOX (In situ monitoring of oxygen depletion in hypoxic ecosystem of coastal and open seas, and land-locked water bodies). Proj. Ref. 226213, EU 2016, FP7-ENVIRONMENT http://cordis. europa.eu/result/rcn/159559_en.html.
[43] IMGW — Instytut Meteorologii i Gospodarki Wodnej, Jakusik, E., Krzymiński, W., Lysiak-Pastuszak, E., Zalewska, T., 2013. Bałtyk Południowy w 2012 r. Charakterystyka wybranych elementów środowiska. IMGW, PIB, Warszawa.
[44] IMGW — Instytut Meteorologii i Gospodarki Wodnej, Miętus, M., Lysiak-Pastuszak, E., Zalewska, T., Krzymiński, W., 2009. Bałtyk Południowy w 2003 r. Charakterystyka wybranych elementów środowiska. IMGW, Gdynia, Warszawa.
[45] Jankowski, A., Staśkiewicz, A., 1994. Prądy. In: Majewski, A., Lauer, Z. (Eds.), Atlas Morza Bałtyckiego. IMGW, Warszawa, 85-92.
[46] Jeffrey, S. W., Mantoura, R. F. C., 1997. Development of pigment methods for oceanography: SCOR-supported Working Groups and objectives. In: Jeffrey, S. W., Mantoura, R. F. C., Wright, S. W. (Eds.), Phytoplankton Pigments in Oceanography. SCOR- UNESCO Publ., Paris, 19-36.
[47] Jeffrey, S. W., Vesk, M., 1997. Introduction to marine phytoplankton and their pigment signatures. In: Jeffrey, S. W., Mantoura, R. F. C., Wright, S. W. (Eds.), Phytoplankton Pigments in Oceanography. SCOR-UNESCO Publishing, 3-84.
[48] Kenney, W. F., Brenner, M., Curtis, J. H., Schelske, C. L., 2010. Identifying sources of organic matter in sediments of shallow lakes using multiple geochemical variables. J. Paleolimnol. 44 (4), 1039-1052, http://dx.doi.org/10.1007/s10933-010-9472-y.
[49] Kowalewska, G., 1997. Chlorophyll a and its derivatives in recent sediments of the southern Baltic Sea collected in the years 1992-1996. Oceanologia 39 (4), 413-432.
[50] Kowalewska, G., Wawrzyniak-Wydrowska, B., Szymczak-Żyła, M., 2004. Chlorophyll a and its derivatives in sediments of the Odra estuary as a measure of its eutrophication. Mar. Pollut. Bull. 49(3), 148-153, http://dx.doi.org/10.1016/j.marpolbul.2004.02.003.
[51] Kowalewska, G., Witkowski, A., Toma, B., 1996. Chlorophylls c in bottom sediments as markers of diatom biomass in the southern Baltic Sea. Oceanologia 38 (2), 227-249.
[52] Kramarska, R., Smagała, S., Uścinowicz, S., 1996. Analiza porównawcza wyników badań uziarnienia osadów przy zastosowaniu laserowego miernika, Analysette 22. Archiwum OGM PIG-PIB, Gdańsk.
[53] Leavitt, P. R., 1993. A review of factors that regulate carotenoid and chlorophyll deposition and fossil pigment abundance. J. Paleolimnol. 9 (2), 109-127, http://dx.doi.org/10.1007/BF00677513.
[54] Leavitt, P. R., Hodgson, D. A., 2001. Sedimentary pigments. In: Smol, J. P., Birks, H. J., Last, W. M. (Eds.), Tracking Environmental Change Using Lake Sediments. Kluwer Acad. Publ., Dordrecht, 295-325.
[55] Leavitt, P. R., Vinebrooke, R. D., Donald, D. B., Smol, J. P., Schindler, D. W., 1997. Past ultraviolet radiation environments in lakes derived from fossil pigments. Nature 388 (6641), 457-459, http://dx.doi.org/10.1038/41296.
[56] Li, X., Bianchi, T. S., Allison, M. A., Chapman, P., Mitra, S., Zhang, Z., Yang, G., Yu, Z., 2012. Composition, abundance and age of total organic carbon in surface sediments from the inner shelf of the East China Sea. Mar. Chem. 145-147, 37-52, http://dx.doi.org/ 10.1016/j.marchem.2012.10.001.
[57] Li, X., Bianchi, T. S., Allison, M. A., Chapman, P., Yang, G., 2013. Historical reconstruction of organic carbon decay and preservation in sediments on the East China Sea shelf. J. Geophys. Res. Biogeosci. 118 (3), 1079-1093, http://dx.doi.org/10.1002/ jgrg.20079.
[58] Li, X., Bianchi, T. S., Yang, Z., Osterman, L. E., Allison, M. A., DiMarco, S. F., Yang, G., 2011. Historical trends of hypoxia in Changjiang River estuary: applications of chemical biomarkers and microfossils. J. Marine Syst. 86 (3-4), 57-68, http://dx.doi.org/ 10.1016/j.jmarsys.2011.02.003.
[59] Louda, J. W., Li, J., Liu, L., Winfree, M. N., Baker, E. W., 1998. Chlorophyll-a degradation during cellular senescence and death. Org. Geochem. 29 (5-7), 1233-1251, http://dx.doi.org/ 10.1016/S0146-6380(98)00186-7.
[60] Louda, J. W., Liu, L., Baker, E. W., 2002. Senescence- and death- related alternation of chlorophylls and carotenoids in marine phytoplankton. Org. Geochem. 33 (12), 1635-1653, http://dx. doi.org/10.1016/S0146-6380(02)00106-7.
[61] Louda, J. W., Loitz, J. W., Rudnick, D. T., Baker, E. W., 2000. Early diagenetic alteration of chlorophyll-a and bacteriochlorophyll-a in a contemporaneous marl ecosystem; Florida Bay. Org. Geochem. 31, 1561-1580.
[62] Magnusson, J., Naes, K., 1986. Basisundersokelser I Drammensfjorden 1982-84. Delrapport 6. Hydrografi, vannkvalitet og vannutskiftninge. NIVA, overvakningsrapporrt 243/86, 77 pp.
[63] Majewski, A., 1990. Morfometria i hydrografia zlewiska. In: Majewski, A. (Ed.), Zatoka Gdańska. IMGW, Wyd. Geolog, Warszawa, 10-19.
[64] Maksymowska, D., Richard, P., Piekarek-Jankowska, H., Riera, P., 2000. Chemical and isotopic composition of the organic matter sources in the Gulf of Gdansk (Southern Baltic Sea). Estuar. Coast. Shelf Sci. 51 (5), 585-598, http://dx.doi.org/10.1006/ecss.2000.0701.
[65] Mälkki, P., Perttilä, M., 2012. Baltic Sea water exchange and oxygen balance. In: Haapala, I. (Ed.), From the Earth's Core to Outer Space (Lecture Notes in Earth System Sciences). Springer-Verlag, Berlin, 151-161.
[66] McGowan, S., Barker, P., Haworth, E. Y., Leavitt, P. R., Maberly, S. C., Pates, J., 2012. Humans and climate as drivers of algal community change in Windermere since 1850. Freshwater Biol. 57 (2), 260-277, http://dx.doi.org/10.1111/j.1365-2427.2011.02689.x.
[67] Mohrholz, V., Naumann, M., Nausch, G., Kruger, S., Grawe, U., 2015. Fresh oxygen for the Baltic Sea — an exceptional saline inflow after a decade of stagnation. J. Marine Syst. 148, 152-166, http://dx.doi.org/10.1016/j.jmarsys.2015.03.005.
[68] Moorhouse, H. L., McGowan, S., Jones, M. D., Barker, P., Leavitt, P. R., Brayshaw, S. A., Haworth, E. Y., 2014. Contrasting effects of nutrients and climate on algal communities in two lakes in the Windermere catchment since the late 19th century. Freshwater Biol. 59 (12), 2605-2620, http://dx.doi.org/10.1111/fwb.12457.
[69] Myślińska, E., 1992. Laboratoryjne badania gruntów. PWN, Warszawa, 52-74.
[70] NGI, 2010. Miljoovervakning av indre Drammensfjord. Arsrapport 2009. NGI-Rapp. 20081432-00-68-R. Datert 15. mars 2010.
[71] Orive, E., Elliot, M., de Jonge, V. N., 2002. Nutrients and eutrophication in estuaries and coastal waters. In: Proceedings of the 31st Symposium of the ECSA. 3-7 July 2000, Bilbao, Spain. Kluwer Acad. Publ., Dordrecht, 526 pp.
[72] Öztürk, M., 1995. Trends of trace metals (Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb) distributions at the oxicanoxic interface and in the sulfidic water of the Drammensfjord. Mar. Chem. 48 (3-4), 329-342, http://dx.doi.org/10.1016/0304-4203(95)92785-Q.
[73] Pastuszak, M., Witek, Z., 2012. Discharges of water and nutrients by the Vistula and Oder rivers draining Polish territory. In: Pastuszak, M., Igras, J. (Eds.), Temporal and Spatial Differences in Emission of Nitrogen and Phosphorus from Polish Territory to the Baltic Sea. National Mar. Fisher. Res. Inst./Fertilizer Research Institute (INSOL), Gdynia/Puławy, 311-353.
[74] Pau, M., Hammer, O., 2013. Sediment mapping and long-term monitoring of currents and sediment fluxes in pockmarks in the Oslofjord, Norway. Mar. Geol. 346, 262-273, http://dx.doi. org/10.1016/j.margeo.2013.09.012.
[75] Pempkowiak, J., 1991. Enrichment factors of heavy metals in the Southern Baltic surface sediments dated with 210Pb and 137Cs. Environ. Int. 17 (5), 421-428, http://dx.doi.org/10.1016/0160- 4120(91)90275-U.
[76] Pienitz, R., Walker, I. R., Zeeb, B. A., Smol, J. P., Leavitt, P. R., 1992. Biomonitoring past salinity changes in an athalassic subarctic lake. Int. J. Salt Lake Res. 1 (2), 91-123, http://dx.doi.org/ 10.1007/BF02904364.
[77] Reuss, N., Conley, D. J., Bianchi, T. S., 2005. Preservation conditions and the use of sediment pigments as a tool for recent ecological reconstruction in four Northern European estuaries. Mar. Chem. 95 (3-4), 283-302, http://dx.doi.org/10.1016/j.marchem.2004.10.002.
[78] Richards, F. A., 1965. Anoxic basins and fjords. In: Riley, J. P., Skirrow, G. (Eds.), Chemical Oceanography, vol. 1.. Acad. Press, London, pp. 611-643.
[79] Sampere, T. P., Bianchi, T. S., Wakeham, S. G., Allison, M. A., 2008. Sources of organic matter in surface sediments of the Louisiana Continental margin: effects of major depositional/transport pathways and Hurricane Ivan. Cont. Shelf Res. 28 (17), 2472-2487, http://dx.doi.org/10.1016Zj.csr.2008.06.009.
[80] Sane, E., Isla, E., Gremare, A., Escoubeyrou, K., 2013. Utility of amino acids as biomarkers in polar marine sediments: a study on the continental shelf of Larsen region, Eastern Antarctic Peninsula. Polar Biol. 36 (11), 1671-1680, http://dx.doi.org/10.1007/ s00300-013-1386-5.
[81] Savage, C., Leavitt, P. R., Elmgrenb, R., 2010. Effects of land use, urbanization, and climate variability on coastal eutrophication in the Baltic Sea. Limnol. Oceanogr. 55 (3), 1033-1046, http://dx. doi.org/10.4319/lo.2010.55.3.1033.
[82] Schüller, S. E., Allison, M. A., Bianchi, T. S., Tian, F., Savage, C., 2013. Historical variability in past phytoplankton abundance and composition in Doubtful Sound, New Zealand. Cont. Shelf Res. 69, 110-122, http://dx.doi.org/10.1016/j.csr.2013.09.021.
[83] Schüller, S. E., Savage, C., 2011. Spatial distribution of diatom and pigment sedimentary records in surface sediments in Doubtful Sound, Fiordland, New Zealand. New Zeal. J. Mar. Fresh. 45 (4), 591-608, http://dx.doi.org/10.1080/00288330.2011.561865.
[84] Schulz, H. D., Zabel, M., 2006. Marine Geochemistry. Springer-Verlag, Berlin, Heidelberg, 574 pp.
[85] Shankle, A. M., Goericke, R., Franks, P. J. S., Levin, L. A., 2002. Chlorin distribution and degradation in sediments within and below the Arabian Sea oxygen minimum zone. Deep-Sea Res. Pt. I 49 (6), 953-969, http://dx.doi.org/10.1016/S0967-0637(01)00077-2.
[86] Smittenberg, R. H., Baas, M., Green, M. J., Hopmans, E. C., Schouten, S., Sinninghe Danste, J. S., 2005. Pre- and post-industrial environmental changes as revealed by the biogeochemical sedimentary record of Drammensfjord, Norway. Mar. Geol. 214 (1-3), 177-200, http://dx.doi.org/10.1016/j.margeo.2004.10.029.
[87] Spooner, N., Harvey, H. R., Pearce, G. E. S., Eckardt, C. B., Maxwell, J. R., 1994a. Biological defunctionalisation of chlorophyll in the aquatic environment II: action of endogenous algal enzymes and aerobic bacteria. Org. Geochem. 22 (3-5), 773-780, http://dx. doi.org/10.1016/0146-6380(94)90138-4.
[88] Spooner, N., Keely, B. J., Maxwell, J. R., 1994b. Biologically mediated defunctionalization of chlorophyll in the aquatic environment I: senescence/decay of the diatom Phaeodactylum tricornutum. Org. Geochem. 21 (5), 509-516, http://dx.doi.org/10.1016/ 0146-6380(94)90101-5.
[89] Stephens, M. P., Kadko, D. C., Smith, C. R., Latasa, M., 1997. Chlorophyll-a and pheopigments as tracers of labile organic carbon at the central equatorial Pacific seafloor. Geochim. Cosmochim. Acta 61 (21), 4605-4619.
[90] Suplińska, M. M., Pietrzak-Flis, Z., 2008. Sedimentation rates and dating of bottom sediments in the Southern Baltic Sea region. Nukleonika 53 (2), 105-111.
[91] Sverdrup, K. A., Armbrust, E. V., 2008. An Introduction to the World's Oceans, 9th edn. McGraw-Hill, Columbus, United States, 521 pp.
[92] Szczepańska, A., Zaborska, A., Maciejewska, A., Kuliński, K., Pempkowiak, J., 2012. Distribution and origin of organic matter in the Baltic Sea sediments dated with 210Pb and 137Cs. Geochronometria 39(1), 1-9, http://dx.doi.org/10.2478/s13386-011-0058-x.
[93] Szymczak-Żyła, M., Kowalewska, G., 2007. Chloropigments a in the Gulf of Gdańsk (Baltic Sea) as markers of the state of this environment. Mar. Pollut. Bull. 55 (10-12), 512-528, http:// dx.doi.org/10.1016/j.marpolbul.2007.09.013.
[94] Szymczak-Żyła, M., Kowalewska, G., Louda, J. W., 2011. Chlorophyll- a and derivatives in recent sediments as indicators of productivity and depositional conditions. Mar. Chem. 125 (1-4), 39-48, http://dx.doi.org/10.1016/j.marchem.2011.02.002.
[95] Szymczak-Żyła, M., Louda, J. W., Kowalewska, G., 2008. Comparison of extraction and HPLC methods for marine sedimentary chloropigment determinations. J. Liq. Chromatogr. Relat. Technol. 31 (8), 1162-1180, http://dx.doi.org/10.1080/10826070802000699.
[96] Szymczak-Żyła, M., Wawrzyniak-Wydrowska, B., Kowalewska, G., 2006. Products of chlorophyll a transformation by selected benthic organisms in the Odra Estuary (Southern Baltic Sea). Hydrobiologia 554 (1), 155-164, http://dx.doi.org/10.1007/s10750-005-1016-5.
[97] Torres, I. C., Inglett, P. W., Brenner, M., Kenney, W. F., Ramesh Reddy, K., 2012. Stable isotope (813C and 815N) values of sediment organic matter in subtropical lakes of different trophic status. J. Paleolimnol. 47 (4), 693-706, http://dx.doi.org/10.1007/ s10933-012-9593-6.
[98] Tselepides, A., Polychronaki, T., Marrale, D., Akoumianaki, I., Dell'Anno, A., Pusceddu, A., Danovaro, R., 2000. Organic matter composition of the continental shelf and bathyal sediments of the Cretan Sea (NE Mediterranean). Prog. Oceanogr. 46 (2-4), 311-344, http://dx.doi.org/10.1016/S0079-6611(00)00024-0.
[99] Villanueva, J., Hastings, D. W., 2000. A century-scale record of the preservation of chlorophyll and its transformation products in anoxic sediments. Geochim. Cosmochim. Acta 64 (13), 2281-2294, http://dx.doi.org/10.1016/S0016-7037(99)00428-7.
[100] Voss, M., Larsen, B., Leivuori, M., Vallius, H., 2000. Stable isotope signals of eutrophication in Baltic Sea sediments. J. Marine Syst. 25 (3-4), 287-298, http://dx.doi.org/10.1016/S0924-7963(00) 00022-1.
[101] Welschmeyer, N. A., Lorenzen, C. J., 1985. Chlorophyll budgets: zoo-plankton grazing and phytoplankton growth in temperate fjord and Central Pacific Gyres. Limnol. Oceanogr. 30 (1), 1-21.
[102] Witek, Z., Ochocki, S., Nakonieczny, J., Podgórska, B., Drags, A., 1999. Primary production and decomposition of organic matter in the epipelagic zone of the Gulf of Gdańsk, an estuary of the Vistula. ICES J. Mar. Sci. 56 (Suppl. A), 3-14.
[103] Wysocki, L. A., Bianchi, T. S., Powell, R. T., Reuss, N., 2006. Spatial variability in the coupling of organic carbon, nutrients, and phytoplankton pigments in surface waters and sediments of the Mississippi River plume. Estuar. Coast. Shelf Sci. 69 (1-2), 47-63, http://dx.doi.org/10.1016Zj.ecss.2006.03.022.
[104] Zaborska, A., Carroll, J., Papucci, C., Pempkowiak, J., 2007. Inter-comparison of alpha and gamma spectrometry techniques used in 210Pb geochronology. J. Environ. Radioactiv. 93 (1), 38-50, http://dx.doi.org/10.1016/j.jenvrad.2006.11.007.
[105] Zaborska, A., Winogadow, A., Pempkowiak, J., 2014. Caesium-137 distribution, inventories and accumulation history in the Baltic Sea sediments. J. Environ. Radioactiv. 127, 11-25, http://dx.doi. org/10.1016/j.jenvrad.2013.09.003.
[106] Zalewska, T., Woroń, J., Danowska, B., Suplińska, M., 2015. Temporal changes in Hg, Pb, Cd, and Zn environmental concentrations in the southern Baltic Sea sediments dated with 210Pb method. Oceanologia 57 (1), 32-43, http://dx.doi.org/10.1016/j.oceano.2014.06.003.
[107] Zegers, B. N., Lewis, W. A., Booij, K., Smittenberg, R. H., Boer, W., de Boer, J., Boon, J. P., 2003. Levels of polybrominated diphenyl ether flame retardants in sediment cores from Western Europe. Environ. Sci. Technol. 37 (17), 3803-3807, http://dx.doi.org/ 10.1021/es034226o.
[108] Zhao, J., Bianchi, T. S., Li, X., Allison, M. A., Yao, P., Yu, Z., 2012. Historical eutrophication in the Changjiang and Mississippi delta-front estuaries: stable sedimentary chloropigments as biomarkers. Cont. Shelf Res. 47, 133-144, http://dx.doi.org/10.1016/j.csr.2012.07.005.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-67d429c9-1d79-47bc-bea9-cfd20bb44feb
Identyfikatory
DOI 10.1016/j.oceano.2016.08.003