Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-666b256b-b956-4760-966d-fb9610c7997b

Czasopismo

Wiadomości Chemiczne

Tytuł artykułu

Współczesne podejścia elektrochemiczne do oznaczania arsenu

Autorzy Ozimek, W.  Rutkowska, I. A.  Cox, J. A.  Kulesza, P. J. 
Treść / Zawartość
Warianty tytułu
EN Recent approaches to electrochemical determination of arsenic
Języki publikacji PL
Abstrakty
EN There has been growing interest in development of new methods for the determination of arsenic due to its high toxity and increasing population in the environment. At present, chromatographic (separation) and spectroscopic (detection) approaches are the most common. Although, they are characterized by high sensitivity and low detection limits, the experimental procedures often require generation of toxic AsH3. Electrochemical methods for the determination of arsenic can be considered as complimentary because they are fairly simple and they are subject to different selectivity criteria. In this respect, various stripping voltammetric procedures are becoming popular. The actual stripping voltammetric measurement consists of two steps in which preconcentration of an analyte at the electrode surface is followed by the so called „stripping” step involving electrode reaction recorded in a form of the voltammetric peak. A representative approach involves reduction of the analyte anions upon application of the sufficiently negative potential to form As(0) on the electrode (e.g. gold) surface; this step is followed by voltammetric oxidation (anodic stripping) of the deposit (to As(III)). In a case of so called cathodic stripping voltammetry, the stationary Hanging Mercury Drop Electrode (HMDE) is often used. During the preconcentration step, an insoluble salt is produced on the electrode surface. To facilitate its formation, copper or selenium species are used as mediators. Under such conditions, insoluble Cu3As2 is generated together with copper amalgam on the surface of HMDE. Because sensitivity and detection limit in electroanalytical determinations strongly depend on the current densities measured, there is a need to search for specific catalytic materials that would induce otherwise highly slow and irreversible redox processes of As(III) (oxidation) and, in particular, As(V) (reduction). Designing effective electrocatalytic materials would be of importance to the development of more sensitive stripping methods and monitoring of arsenic under chromatographic and flow conditions. Representative examples of catalytic systems are provided and discussed here. Some attention is also paid to application of enzymes to sensing of arsenic. Electrochemical determination of arsenic(III) is generally better described in literature. Direct determination of As(V) typically requires its binding into chemical compounds. It is reasonable to expect intense research in future aiming at the developing of new electroanalytical methods for direct selective determination of As(V).
Słowa kluczowe
PL arsen   oznaczenia elektrochemiczne   woltamperometria strippingowa   elektrokataliza   elektrody modyfikowane   nanocząstki metali   nanocząstki tlenków metali  
EN arsenic   electrochemical determinations   stripping voltammetry   electrocatalysis   modified electrodes   metal nanoparticles   metal oxide nanoparticles  
Wydawca Polskie Towarzystwo Chemiczne
Czasopismo Wiadomości Chemiczne
Rocznik 2015
Tom [Z] 69, 9-10
Strony 809--822
Opis fizyczny Bibliogr. 34 poz.
Twórcy
autor Ozimek, W.
  • Wydział Chemii, Uniwersytet Warszawski ul Pasteura 1, 02-093 Warszawa
autor Rutkowska, I. A.
  • Wydział Chemii, Uniwersytet Warszawski ul Pasteura 1, 02-093 Warszawa
autor Cox, J. A.
  • Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
autor Kulesza, P. J.
Bibliografia
[1] A. Eaton, H.C. Wang, J. Northington, Analytical Chemistry of Arsenic in Drinking Water, AWWA Research Foundation and American Water Works Association, Denver 1998, str. 2.
[2] A. Goswami, P.K. Raul, M.K. Purkati, Chem. Eng. Res. Des., 2012, 90, 1387.
[3] S.B. Rasul, A.K.M. Munir, Z.A. Hossain, A.H. Khan, M. Alauddin, A. Hussam, Talanta, 2002, 58, 33.
[4] M. Chen, Y. Lin, C. Gu, J. Wang, Talanta, 2013, 104, 53.
[5] D.E. Mays, A. Hussam, Anal. Chim. Acta, 2009, 646, 6.
[6] W.W. Kubiak, R. Piech, Skrypt. Akademia Górniczo-Hutnicza, Wydział Inżynierii Materiałowej i Ceramiki, Katedra Chemii Analitycznej.
[7] R.S. Sadana, Anal. Chem., 1983, 55, 304.
[8] I.N. Savina, C.J. English, R.L.D. Whitby, Y. Zheng, A. Leistner, S.V. Mikhalovsky, A.B. Cundy, J. Hazard. Mater., 2011, 192, 1002.
[9] M.M. Ottakama Thotiyl, H. Basti, J. A. Sanchez, C. Goyer, L. Coche-Guerente, P.Dumy, S.Sampath, P. Labbe, J.C. Moutet, J. Colloid Interface Sci. 2012, 383, 130.
[10] M. Hossani, Md. M. Islam, S. Ferdousi, T. Okajima, T. Ohsaka, Electroanalysis, 2008, 20, 2435.
[11] J.P. Arnold, R.M. Johnson, Talanta, 1969, 16, 1191.
[12] S.B. Rasul, A.K.M. Munir, Z.A. Hossani, A.H. Khan, M. Alauddin, A. Hussam, Talanta, 2002, 58, 33.
[13] E. Punrat, S. Chuanuwatanakul, T. Kaneta, S. Motomizu, O .Chailapakul, Talanta, 2013, 116, 1018.
[14] N. Moghimi, M. Mohapatra, K.T. Leung, Anal. Chem., 2015, 87, 5546.
[15] C. Gao, X.-Y. Yu, S.-Q. Xiong, J.-H. Liu, X.-J. Huang, Anal. Chem., 2013, 85, 2673.
[16] A.Cavicchioli, M.A. La-Scalea, I.G.R. Gutz, (Review) Electroanalysis, 2004, 16, 697.
[17] C. Locatelli, Electroanalysis, 1997, 9, 1014.
[18] J. Zima, C.M.G van der Berg, Anal. Chim. Acta, 1994, 289, 291.
[19] L. Jiajie, Y. Nagosa, Anal. Chim. Acta, 2007, 593, 1.
[20] U. Greulach, G. Henze, Anal. Chim. Acta, 1995, 306, 217.
[21] G. Henze, W. Wagner, S. Sander, Fresenius J. Anal. Chem., 1997, 358, 741.
[22] D. Li, J. Li, X. Jia, Y. Hang, E. Wang, Anal. Chim. Acta, 2012, 733, 23.
[23] P.J. Kulesza, J. Electroanal. Chem., 1987, 20, 299.
[24] J.A. Cox, P.J. Kulesza, Anal. Chem., 1984, 56, 1021.
[25] J.A. Cox, R. Jaworski, P.J. Kulesza, Electroanalysis, 1991, 3,869.
[26] J.A. Cox, P.J. Kulesza, Catalytic Surfaces for Electroanalysis, Encyclopedia of Analytical Chemistry, R.A. Meyers (Red.), John Wiley, 2009.
[27] J.A. Cox, B.K. Das, J. Electroanal. Chem., 1987, 233, 87.
[28] D.V. Ca, L. Sun, J.A. Cox, Electrochim. Acta, 2006, 51, 2188.
[29] P.J. Kulesza, Analusis, 1988, 16, 125.
[30] W. Ozimek, Praca magisterska, Wydział Chemii Uniwersytetu Warszawskiego, Warszawa 2014.
[31] S. Sanllorente-Mendez, O. Dominguez-Renedo, M.J. Arcos-Martinez, Sensors (Basel), 2010, 10, 2119.
[32] Y. Liu, W. Wei, Electrochem. Commun., 2008, 10, 872.
[33] D.Q. Hung, O. Nekrassova, R.G. Compton, Talanta, 2004, 64, 269.
[34] J.T. Van Elteren, Z.Slejkovec, J. Chromatogr. A, 1997, 789, 339.
Uwagi
Praca została opublikowana w specjalnym numerze „Wiadomości Chemicznych”, poświęconym pamięci Profesora Stanisława Głąba, w 70-tą rocznicę Jego urodzin
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-666b256b-b956-4760-966d-fb9610c7997b
Identyfikatory