Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-64e75c81-8ad3-47af-b466-f244e74a713d

Czasopismo

Environment Protection Engineering

Tytuł artykułu

Mathematical description of a river absorption capacity on the example of the middle Warta catchment

Autorzy Wilk, P.  Orlińska-Woźniak, P.  Gębala, J. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN The paper presents a mathematical description of a module to determine the river absorption capacity (RAC), which is an extension of the Macromodel DNS/SWAT developed in IMGW-PIB. The balance equations of pollution loads are presented, as well as the mathematical description of the retention of pollutants, taking into account concentrations and loads of pollutants in selected river profiles. The developed mathematical module mRAC was tested in the Warta catchment between river calculation profiles Nowa Wieś Podgórna and Oborniki for total nitrogen (TN) and total phosphorus (TP).
Słowa kluczowe
PL zanieczyszczenie rzeki   opis matematyczny   model matematyczny mRac   azot całkowity   fosfor całkowity  
EN river pollution   mathematical description   mathematical mode mRAC   total nitrogen   total phosphorus  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Environment Protection Engineering
Rocznik 2018
Tom Vol. 44, nr 4
Strony 99--116
Opis fizyczny Bibliogr. 25 poz., tab., rys.
Twórcy
autor Wilk, P.
  • Section of Modeling Surface Water Quality, Institute of Meteorology and Water Management, National Research Institute (IMGW-PIB), pawel.wilk@imgw.pl
autor Orlińska-Woźniak, P.
  • Section of Modeling Surface Water Quality, Institute of Meteorology and Water Management, National Research Institute (IMGW-PIB)
autor Gębala, J.
  • Section of Modeling Surface Water Quality, Institute of Meteorology and Water Management, National Research Institute (IMGW-PIB)
Bibliografia
[1] PEARCE D., BARBIER E., MARKANDYA A., Sustainable development. economics and environment in the Third World, Routledge, London 2000.
[2] D 2455/2001/WE. Decision of the European Parliament and of the Council. Establishing the list of priority substances in the field of water policy and amending Directive 2000/60/EC, 2001.
[3] GROMIEC M., SADURSKI A., ZALEWSKI M., ROWIŃSKI P., Hazards related to water quality, Nauka, 2014, 1, 99–122 (in Polish).
[4] DURKOWSKI T., JARNUSZEWSKI G., Changes in quality of surface and ground waters during implementation of nitrates directive in selected agricultural river basin of western Pomerania, Ecol. Eng., 2015, 43, 122–130.
[5] OSTOJSKI M.S., Modeling of the processes of discharge of nutrients to the Baltic Sea on the example of nitrogen and total phosphorus, PWN, 2012 (in Polish).
[6] HAIMES Y.Y., Risk modeling, assessment, and management, Wiley, 2015.
[7] JI Z.G., Hydrodynamics and water quality. Modeling rivers, lakes, and estuaries, Wiley, 2017.
[8] YEN H., WHITE M.J., JEONG J., ARABI M., ARNOLD J.G., Evaluation of alternative surface runoff accounting procedures using SWAT model, Int. J. Agric. Biol. Eng., 2015, 8 (3), 64–68.
[9] CHMIELOWSKI W.Z., JARZĄBEK A., Exercises and projects in the field of water management, Wyd. Politechniki Krakowskiej, Krakow 2008 (in Polish).
[10] WILK P., The method of calculating river absorption capacity as a tool to assess the physicochemical state of surface waters, PhD Thesis, IMGW-PIB, Warsaw 2015 (in Polish).
[11] ABBASPOUR K.C., ROUHOLAHNEJAD E., VAGHEFI S., SRINIVASAN R., YANG H., KLØVE B., Calibration and uncertainty of a high-resolution large-scale SWAT model, J. Hydrol., 2015, 524, 733–752.
[12] CIBIN R., TRYBULA E., CHAUBEY I., BROUDER S.M., VOLENEC J.J., Watershed‐scale impacts of bioenergy crops on hydrology and water quality using improved SWAT model, GCB Bioen., 2016, 8 (4), 837–848.
[13] NEITSCH S.L., ARNOLD J., KINIRY R., WILLIAMS J.R., Soil and water assessments tool theoretical documentation, Blackland Research Center, Texas Agricultural Experiment Station, 2011.
[14] DE KLEIN J.J.M., From ditch to delta. Nutrient retention in running waters, PhD Thesis, PhD-thesis Wageningen University, Wageningen, The Netherlands, 2008.
[15] KRONVANG B., LAUBEL A., LARSEN S.E., FRIBERG N., Pesticides and heavy metals in Danish streambed sediment in the interactions between sediments and water, Springer, 2003, 93–101.
[16] LA NOTTE A., MAES J., DALMAZZONE S., CROSSMAN N.D., GRIZZETTI B., BIDOGLIO G., Physical and monetary ecosystem service accounts for Europe: A case study for in-stream nitrogen retention, Ecosyst. Serv., 2017, 23, 18–29.
[17] MPHP. The Map of Hydrographical Divisions of Poland, http://www.kzgw.gov.pl/index.php/pl/ materialy-informacyjne/rastrowa-mapa-podzialu-hydrograficznego-polski Polish Waters, KZGW, 2009.
[18] GĘBALA J., ORLIŃSKA-WOŹNIAK P., WILK P., Poland’s surface waters pollution with nitrogen compounds originating from agriculture. Selected issues related to the water quality assessment, Gospodarka Wodna, 2013, 11, 424–430 (in Polish).
[19] AKPOŚ. Update of the National Sewage Treatment Program. National Water Management Authority, http://www.kzgw.gov.pl
[20] OSTOJSKI M.S., GĘBALA J., ORLIŃSKA-WOŹNIAK P., WILK P., Implementation of robust statistics in the calibration, verification and validation step of model evaluation to better reflect processes concerning total phosphorus load occurring in the catchment, Ecol. Model., 2016, 332, 83–93.
[21] NAKAGAWA S., SCHIELZETH H., A general and simple method for obtaining R2 from generalized linear mixed‐effects models, Meth. Ecol. Evol., 2013, 4 (2), 133–142.
[22] YESUF H.M., MELESSE A.M., ZELEKE G., ALAMIREW T., Streamflow prediction uncertainty analysis and verification of SWAT model in a tropical watershed, Environ. Earth Sci., 2016, 75 (9), 806.
[23] BONUMÁ N.B., ROSSI C.G., ARNOLD J.G., REICHERT J.M., MINELLA J.P., ALLEN P.M., VOLK M., Simulating landscape sediment transport capacity by using a modified SWAT model, J. Environ. Qual., 2014, 43 (1), 55–66.
[24] VERMA A.K., JHA M.K., Evaluation of a GIS-based watershed model for streamflow and sediment-yield simulation in the upper Baitarani river basin of Eastern India, J. Hydrol. Eng., 2015, 20 (6), 13–144.
[25] SARGENT R.G., Verification and validation of simulation models, J. Sim., 2013, 7 (1), 162–176.
Uwagi
PL Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-64e75c81-8ad3-47af-b466-f244e74a713d
Identyfikatory
DOI 10.5277/epe180407