Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Parameter identification of the basset force acting on particles in fluid flow induced by the oscillating wall

Treść / Zawartość
Warianty tytułu
Języki publikacji
The article is aimed at the development of the analytical approach for evaluating the parameters of the Basset force acting on a particle in two-dimensional fluid flow induced by the oscillating wall. By applying regression analysis, analytical expressions to determine complementary functions were established for evaluating the Basset force. The obtained dependencies were generalized using the infinite power series. As a result of studying the hydrodynamics of a two-phase flow, analytical dependencies to determine the Basset force were proposed for assessing its impact on particles of the dispersed phase in a plane channel with the oscillating wall. It was discovered that the Basset force affects larger particles. However, in the case of relatively large wavelengths, its averaged value for the vibration period is neglected. Additionally, the value of the Basset force was determined analytically for the case of relatively small wavelengths. Moreover, it was discovered that its impact can be increased by reducing the wavelength of the oscillating wall.
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
  • Institute of Manufacturing Management, Technical University of Kosice Presov, Slovakia,
  • [1] Gubaidullin, D.A., Osipov, P.P., & Zakirov, A.N. (2014). Impact of Basset force on threshold values of particle drag coefficient and density parameter in standing sinusoidal wave. Journal of Physics: Conference Series, 567, 012018.
  • [2] Fan, F., Yang, X., & Kim, C.N. (2013). Direct simulation of inhalable particle motion and collision in a standing wave field. Journal of Mechanical Science and Technology, 27(6), 1707-1712.
  • [3] Gubaidullin, D.A., Osipov, P.P., & Nasyrov, R.R. (2018). Influence of the drag coefficient of particles on their distribution in a two-dimensional acoustic resonator. Journal of Engineering Physics and Thermophysics, 91(3), 688-695.
  • [4] Wang, S., Allen, J.S., & Ardekani, A.M. (2017). Unsteady particle motion in an acoustic standing wave field. European Journal of Computational Mechanics, 26(1-2), 115-130.
  • [5] Doughty, T.A., Belle-Isle, A.W., & Pendowski, N. (2017). Experimental validation of nonlinear model tracking with varying conditions. Topics in Modal Analysis & Testing, 10, 139-162.
  • [6] Brouwers, J.J.H. (2010). Langevin equation of a fluid particle in wall-induced turbulence. Theoretical and Mathematical Physics, 163(2), 677-695.
  • [7] Barjona, M., & da Silva, C.B. (2017). Kolmogorov’s Lagrangian similarity law revisited. Physics of Fluids, 29, 105106.
  • [8] Verhas, J. (2004). Onsager’s reciprocal relations and some basic laws. Journal of Computational and Applied Mechanics, 5(1), 157-163.
  • [9] La Porta, A., Voth, G.A., Crawford, A.M., Alexender, J., & Bodenschatz, E. (2001). Fluid particle accelerations in fully developed turbulence. Annual Review of Fluid Mechanics, 409, 1017-1019.
  • [10] Dostoglou, S. (2017). Statistical hydrodynamics and related problems in spaces of probability measures. AIP Conference Proceedings, 1907, 020004.
  • [11] Ilinskii, Y.A., Zabolotskaya, E.A., & Hamilton, M.F. (2012). Acoustic radiation force on a sphere in tissue. AIP Conference Proceedings, 1474, 255-258.
  • [12] Sapozhnikov, O.A. (2013). Radiation force of an arbitrary acoustic beam on an elastic sphere in a fluid. The Journal of the Acoustical Society of America, 133(2), 661-676.
  • [13] Doinikov, A.A. (2002). Translational motion of a spherical bubble in an acoustic standing wave of high intensity. Physics of Fluids, 14, 1420.
  • [14] Steinberg, P. (2005). Landau hydrodynamics and RHIC phenomena. Acta Physica Hungarica, 24(1-4), 51-57.
  • [15] Sklabinskyi, V., Liaposhchenko, O., Pavlenko, I., Lytvynenko, O., & Demianenko, M. (2019). Modelling of liquid’s distribution and migration in the fibrous filter layer in the process of inertial-filtering separation. Advances in Design, Simulation and Manufacturing, DSMIE 2018, Lecture Notes in Mechanical Engineering, 489-497.
  • [16] Xu, S., & Nadim, A. (2015). Three models for rectilinear particle motion with the Basset history force. Electronic Journal of Differential Equations, 104, 1-19.
  • [17] Liaposchenko, O., Pavlenko, I., & Nastenko, O. (2017). The model of crossed movement and gas-liquid flow interaction with captured liquid film in the inertial-filtering separation channels. Separation and Purification Technology, 173, 240-243.
  • [18] Shen, C., Wang, W., He, S., & Xu, Y. (2018). Numerical and experimental comparative study on the flow-induced vibration of a plane gate. Water, 10(11), 1551.
  • [19] Liaposhchenko, O.O., Sklabinskyi, V.I., Zavialov, V.L., Pavlenko, I.V., Nastenko, O.V., & Demianenko, M.M. (2017). Appliance of inertial gas-dynamic separation of gas-dispersion flows in the curvilinear convergent-divergent channels for compressor equipment reliability improvement. IOP Conference Series: Materials Science and Engineering, 233(1), 012025.
  • [20] Kirsh, V.A. (2016). Stokes flow past periodic rows of porous cylinders. Theoretical Foundations of Chemical Engineering, 40(5), 465-471.
  • [21] Kinjal, P., Mehta, M.N., & Patel, T.R. (2011). The power series solution of fingering phenomenon arising in fluid flow through homogeneous porous media. Applications and Applied Mathematics, 6(2), 497-509.
  • [22] Pavlenko, I.V., Liaposhchenko, O.O., Sklabinskyi, V.I., Ivanov, V.O., & Gusak, O.G. (2018). Hydrodynamic features of gas-liquid flow movement in a separation device plane channel with an oscillating wall. Problemele Energeticii Regionale, 3(38), 62-70.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.