Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-6032f498-09af-40c2-a38b-889e4b824b32

Czasopismo

Acta of Bioengineering and Biomechanics

Tytuł artykułu

Application of the Teager Kaiser Energy Operator in an autonomous burst detector to create onset and offset profiles of forearm muscles during reach-to-grasp movements

Autorzy Krabben, T.  Prange, G. B.  Kobus, H. J.  Rietman, J. S.  Buurke, J. H. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Purpose: The primary aim of this study is to investigate the potential benefit of the Teager–Kaiser Energy Operator (TKEO) as data pre-processor, in an autonomous burst detection method to classify electromyographic signals of the (fore)arm and hand. For this purpose, optimal settings of the burst detector, leading to minimal detection errors, need to be known. Additionally, the burst detector is applied to real muscle activity recorded in healthy adults performing reach-to-grasp movements. Methods: The burst detector was based on the Approximated Generalized Likelihood Ratio (AGLR). Simulations with synthesized electromyographic (EMG) traces with known onset and offset times, yielded optimal settings for AGLR parameters “window width” and “threshold value” that minimized detection errors. Next, comparative simulations were done with and without TKEO data pre-processing. Correct working of the burst detector was verified by applying it to real surface EMG signals obtained from arm and hand muscles involved in a submaximal reach-to-grasp task, performed by healthy adults. Results: Minimal detection errors were found with a window width of 100 ms and a detection threshold of 15. Inclusion of the TKEO contributed significantly to a reduction of detection errors. Application of the autonomous burst detector to real data was feasible. Conclusions: The burst detector was able to classify muscle activation and create Muscle Onset Offset Profiles (MOOPs) autonomously from real EMG data, which allows objective comparison of MOOPs obtained from movement tasks performed in different conditions or from different populations. The TKEO contributed to improved performance and robustness of the burst detector.
Słowa kluczowe
PL elektromiografia   AGLR   Teager-Kaiser  
EN electromyography   AGLR   Teager-Kaiser   timing   reach   grasp  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Acta of Bioengineering and Biomechanics
Rocznik 2016
Tom Vol. 18, nr 4
Strony 135--144
Opis fizyczny Bibliogr. 25 poz., rys., wykr.
Twórcy
autor Krabben, T.
  • Roessingh Research and Development, Roessinghsbleekweg 33B, Enschede, the Netherlands , thijskrabben@gmail.com
  • Department of Biomechanical Engineering, University of Twente, Drienerlolaan 5, Enschede, the Netherlands
autor Prange, G. B.
  • Roessingh Research and Development, Roessinghsbleekweg 33B, Enschede, the Netherlands
  • Department of Biomechanical Engineering, University of Twente, Drienerlolaan 5, Enschede, the Netherlands
autor Kobus, H. J.
  • Roessingh Research and Development, Roessinghsbleekweg 33B, Enschede, the Netherlands
autor Rietman, J. S.
  • Roessingh Research and Development, Roessinghsbleekweg 33B, Enschede, the Netherlands
  • Department of Biomechanical Engineering, University of Twente, Drienerlolaan 5, Enschede, the Netherlands
  • Rehabilitation Centre 'het Roessingh', Roessinghsbleekweg 33, Enschede, the Netherlands
  • Medical Spectrum Twente, Haaksbergerstraat 55, Enschede, the Netherlands
autor Buurke, J. H.
  • Roessingh Research and Development, Roessinghsbleekweg 33B, Enschede, the Netherlands
  • Rehabilitation Centre 'het Roessingh', Roessinghsbleekweg 33, Enschede, the Netherlands
  • Department of Biomedical Signals and Systems, University of Twente, Drienerlolaan 5, Enschede, the Netherlands
Bibliografia
[1] Bonato, P., D’Alessio, T. and Knaflitz, M. 1998. A statistical method for the measurement of muscle activation intervals from surface myoelectric signal during gait. IEEE Trans Biomed Eng. 45, 3 (Mar. 1998), 287–299.
[2] Cavalcanti Garcia, G.M.A. and Vieira, T.M.M. 2011. Surface electromyography: Why, when and how to use it. Rev. Andal. Med. Deport. 4, (2011), 14–28.
[3] Coxon, J.P., Stinear, C.M. and Byblow, W.D. 2007. Selective inhibition of movement. J Neurophysiol. 97, 3 (Mar. 2007), 2480–2489.
[4] Hodges, P.W. and Bui, B.H. 1996. A comparison of computer-based methods for the determination of onset of muscle contraction using electromyography. Electroencephalogr Clin Neurophysiol. 101, 6 (Dec. 1996), 511–519.
[5] Kaiser, J.F. 1990. On a simple algorithm to calculate the “energy” of a signal. Proc. Int Acoustics, Speech, and Signal Processing ICASSP-90. Conf (1990), 381–384.
[6] Kloosterman, M.G.M., Snoek, G.J., Kouwenhoven, M., Nene, A.V. and Jannink, M.J.A. 2010. Influence of gravity compensation on kinematics and muscle activation patterns during reach and retrieval in subjects with cervical spinal cord injury: an explorative study. J Rehabil Res Dev. 47, 7 (2010), 617–628.
[7] Krabben, T., Buurke, J.H., Prange, G.B. and Rietman, J.S. 2013. A feasibility study of the effect of multichannel electrical stimulation and gravity compensation on hand function in stroke patients: a pilot study. IEEE Int Conf Rehabil Robot. 2013, (Jun. 2013), 1–6.
[8] Kroon, J.R. de, Lee, J.H. van der, IJzerman, M.J. and Lankhorst, G.J. 2002. Therapeutic electrical stimulation to improve motor control and functional abilities of the upper extremity after stroke: a systematic review. Clin Rehabil. 16, 4 (Jun. 2002), 350–360.
[9] Li, X. and Aruin, A. 2005. Muscle activity onset time detection using teager-kaiser energy operator. Conf Proc IEEE Eng Med Biol Soc. 7, (2005), 7549–7552.
[10] Li, X., Zhou, P. and Aruin, A.S. 2007. Teager-Kaiser energy operation of surface EMG improves muscle activity onset detection. Ann Biomed Eng. 35, 9 (Sep. 2007), 1532– 1538.
[11] Luca, C.J. de 1997. The use of surface electromyography in biomechanics. Journal of Applied Biomechanics. 13, 2 (1997), 135–163.
[12] Madeleine, P., Bajaj, P., Søgaard, K. and Arendt-Nielsen, L. 2001. Mechanomyography and electromyography force relationships during concentric, isometric and eccentric contractions. J Electromyogr Kinesiol. 11, 2 (Apr. 2001), 113–121.
[13] Manresa, J.A.B., Mørch, C.D. and Andersen, O.K. 2010. Teager-kaiser energy operator improves the detection and quantification of nociceptive withdrawal reflexes from surface electromyography. European Signal Processing Conference (Aalborg, Denmark, 2010), 910–913.
[14] Maragos, P., Kaiser, J.F. and Quatieri, T.F. 1993. Energy separation in signal modulations with application to speech analysis. Signal Processing, IEEE Transactions on. 41, 10 (1993), 3024–3051.
[15] Merletti, R., Botter, A., Troiano, A., Merlo, E. and Minetto, M.A. 2009. Technology and instrumentation for detection and conditioning of the surface electromyographic signal: state of the art. Clin Biomech (Bristol, Avon). 24, 2 (Feb. 2009), 122–134.
[16] Merlo, A., Farina, D. and Merletti, R. 2003. A fast and reliable technique for muscle activity detection from surface EMG signals. IEEE Trans Biomed Eng. 50, 3 (Mar. 2003), 316–323.
[17] Paulignan, Y., MacKenzie, C., Marteniuk, R. and Jeannerod, M. 1990. The coupling of arm and finger movements during prehension. Exp Brain Res. 79, 2 (1990), 431–435.
[18] Prange, G.B., Krabben, T., Renzenbrink, G.J., Ijzerman, M.J., Hermens, H.J. and Jannink, M.J.A. 2012. Changes in muscle activation after reach training with gravity compensation in chronic stroke patients. Int J Rehabil Res. 35, 3 (Sep. 2012), 234–242.
[19] Sangole, A.P. and Levin, M.F. 2008. Palmar arch dynamics during reach-to-grasp tasks. Exp Brain Res. 190, 4 (Oct. 2008), 443–452.
[20] Solnik, S., DeVita, P., Rider, P., Long, B. and Hortobágyi, T. 2008. Teager-Kaiser Operator improves the accuracy of EMG onset detection independent of signal-to-noise ratio. Acta Bioeng Biomech. 10, 2 (2008), 65–68.
[21] Solnik, S., Rider, P., Steinweg, K., DeVita, P. and Hortobágyi, T. 2010. Teager-Kaiser energy operator signal conditioning improves EMG onset detection. Eur J Appl Physiol. 110, 3 (Oct. 2010), 489–498.
[22] Staude, G., Flachenecker, C., Daumer, M. and Wolf, W. 2001. Onset detection in surface electromyographic signals: a systematic comparison of methods. EURASIP Journal on Applied Signal Processing. 2 (2001), 67–81.
[23] Staude, G. and Wolf, W. 1999. Objective motor response onset detection in surface myoelectric signals. Med Eng Phys. 21, 6-7 (1999), 449–467.
[24] Taelman, J., Vanderhaegen, J., Robijns, M., Naulaers, G., Spaepen, A. and Huffel, S.V. 2011. Estimation of muscle fatigue using surface electromyography and near-infrared spectroscopy. Adv Exp Med Biol. 701, (2011), 353–359.
[25] Vliet, P.M. van and Sheridan, M.R. 2007. Coordination between reaching and grasping in patients with hemiparesis and healthy subjects. Arch Phys Med Rehabil. 88, 10 (Oct. 2007), 1325–1331.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-6032f498-09af-40c2-a38b-889e4b824b32
Identyfikatory
DOI 10.5277/ABB-00471-2015-02