PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Scaling properties of rainfall records in some Mexican zones

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Since the 1990 decade, it has been suggested that atmospheric processes associated with rainfall could be a self-organized critical (SOC) phenomenon similar, for example, to seismicity. In this sense, the rain events taken as the output of the complex atmospheric system (sun’s radiation, water evaporation, clouds, etc.) are analogous to earthquakes, as the output of a relaxation process of the earth crust. A clue on this possible SOC behavior of rain phenomenon has been the ubiquitous presence of power laws in rain statistics. In the present article, we report the scaling properties of rain precipitation data taken from meteorological stations located at six zones of Mexico. Our results are consistent with those that assert that rainfall is a SOC phenomenon. We also analyze the Hurst exponent, which is appropriate to measure long-term memory of time series.
Czasopismo
Rocznik
Strony
361--367
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
  • Posgrado en Ciencias de la Tierra, Centro de Ciencias de la Atmósfera UNAM Mexico City Mexico, ferciaa@gmail.com
  • Instituto Politécnico Nacional-UPIITA Mexico City Mexico
  • Instituto de Geofísica UNAM Mexico City Mexico
Bibliografia
  • 1. Andrade JS Jr, Wainer I, Mendes Filho J, Moreira JE (1995) Self-organized criticality in the El Nio Southern oscillation. Phys A 215:331
  • 2. Andrade RFS, Schellnhuber HJ, Claussen M (1998) Analysis of rainfall records: possible relation to self-organized criticality. Phys A 254:557
  • 3. Angulo-Brown F, Muñoz-Diosdado A (1999) Further seismic properties of a spring-block earthquake model. Geophys J Int 139:410–418
  • 4. Bak P, Tang C, Weisenfeld K (1987) Self-organized criticality: an explanation of the 1/f noise. Phys Rev Lett 59:381
  • 5. Bak P, Tang C, Weisenfeld K (1988) Self-organized criticality. Phys Rev A 38:364
  • 6. Domino K, Blachowicz T, Ciupak M (2014) The use of copula functions for predictive analysis of correlations between extreme storm tides. Phys A 413:489
  • 7. Fraedrich K, Lander C (1993) Scaling regimes of composite rainfall time series. Tellus 45A:289
  • 8. García-Marín A, Jiménez-Ornero F, Ayuso JL (2008) La criticalidad autoorganizada y el análisis de datos históricos de lluvia en Córdoba (Andalucía). Ingeniería del Agua 15:13
  • 9. Geller RJ, Jackson DD, Kagan Y, Mulargia F (1997) Earthquakes cannot be predicted. Science 275:1616
  • 10. Grumbacher SK, McEwen KM, Halverson DA, Jacobs DT, Lindner J (1993) Self organized criticality: an experiment with sandpiles. Am J Phys 61:329
  • 11. Gutenberg B, Richter CF (1944) Frequency of earthquakes in California Bull. Seism. Soc. Am. 34:185
  • 12. Hurst HE (1949) The capacity needed in reservoirs for long-term storage. The Nile Basin, Supplement to, vol. VII. Government Press, Cairo
  • 13. Hurst HE, Black RP, Simaika YM (1965) Long-term storage: an experimental study. Constable, London
  • 14. Kanamori H, Anderson DL (1974) Theoretical basis of some empirical relations in seismology. Bull Seism Soc Am 54:1073–1095
  • 15. Kantelhardt Jan W (2008) Fractal and Multifractal Time Series, arXiv:0804.0747v1[physics.data-an]
  • 16. Liebovicitch LS (1998) Fractals and chaos simplified for the life sciences. Oxford University Press, Oxford
  • 17. López-Lambraño A, Carrillo-Yee E, Fuentes C, López- RA, López-Lambraño M (2017) Una revisión de los métodos para estimar el exponente de Hurst y la dimensión fractal en series de precipitación y temperatura Rev. Mex Fís 63:244
  • 18. Lovejoy S, Schertzer D (eds) (1991) Nonlinear variability in geophysics: scaling and fractals. Kluwer, The Netherlands
  • 19. Mandelbrot BB (1977) The fractal geometry of nature. WH freeman, New York
  • 20. Mandelbrot BB (2002) Gaussian self-affinity and fractals. Springer, Berlin
  • 21. Mandelbrot BB, Hudson R (2004) The (mis)behaviour of markets: a fractal view of risk, ruin and reward. Profile Books, London
  • 22. Olami Z, Feder HJS, Christensen K (1992) Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes. Phys Rev Lett 68:1244–1248
  • 23. Pacheco JF, Scholz CH, Sykes LR (1992) Changes in frequency-size relationship from small to large earthquakes. Nature 335:71–73
  • 24. Peng C-K, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL (1994) Mosaic organization of DNA nucleotides. Phys Rev E 49:1685
  • 25. Peters O, Christensen K (2002) Rain: relaxations in the sky. Phys Rev E 66:036120–1
  • 26. Peters O, Hertlein C, Christensen K (2002) A complexity view of rainfall. Phys Rev Lett 88:018701–1
  • 27. Rangarajan G, Sant DA (2004) Fractal dimension analysis of Indian climatic dynamics. Chaos Solit Fract 19:285–291
  • 28. Rehman S, El-Gebeily M (2009) A study of Saudi climatic parameters using climatic predictability indices. Chaos Solit Fract 41:1055
  • 29. Richter CF (1958) Elementary seismology. W. H. Freeman, New York
  • 30. Schepers HE, van Beek JHGM, Bassingthwaighte JB (1992) Four methods to estimate fractal dimension from self-affine signals. IEEE Eng Med Biol 11:57
  • 31. Scholz CH (1992) The mechanics of earthquakes and faulting. Cambridge University Press, Cambridge
  • 32. Siu-Ngan Lam N, De Cola L (1993) Fractals in geography. Prentice Hall, Upper Saddle River
  • 33. Sutcliffe J, Hurst S, Awadallah AG, Brown E, Hamed K (2016) Harold Edwin Hurst: the Nile and Egypt, past and future. Hydrol Sci J 61:1557–1570
  • 34. Svensson C, Olsson J, Berndtsson R (1996) Multifractal properties of daily rainfall in twp different climate. Water Resour Res 32:2463
  • 35. Utsu T, Seki A (1954) A relation between the area of aftershocks regions and the energy of main shock. J Seism Soc Jpn 7:233
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-601b086c-b646-4650-a681-a75bb2286f75
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.