Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

In vitro test method for the development of intelligent lower limb prosthetic devices

Warianty tytułu
Języki publikacji
In recent decades, the technological progress has contributed to the development of appliances that significantly improve human life. The biomedical field has benefited more than others from this innovation process. In particular, robotics advances have led to the development of prostheses that allow who suffered the amputation of a lower limb to walk almost like a healthy person. Although sophisticated, the current solutions are not yet able to completely reestablish the function of their biological counterpart. According to authors' opinion this deficiency is principally due to the lack of suitable development and verification methods rather than of appropriate technology resources. Therefore, an innovative bench for testing lower limb prostheses considering working conditions more realistic than those defined by the legislation in force is presented in this paper. The mechanical setup is composed of a 6-axis industrial robot and a custom 2-axis active force plate. The first one is used to replicate the movements of the limb residual segment in space. The second one to load the prosthetic foot both in longitudinal and vertical direction, that is, in the sagittal plane. Both the design choices and the operation procedure are illustrated. Then, a numerical model of the bench is developed in order to assess the merits and the limits of the proposed solution.
  • Department of Mechanical Engineering, Politecnico di Milano, Italy
  • Department of Industrial and Information Engineering, Università degli Studi di Pavia, Italy,
  • Department of Mechanical Engineering, Politecnico di Milano, Italy
  • [1] Lombardo FL, Maggini M, De Bellis A, Seghieri G, Anichini R. Lower extremity amputations in persons with and without diabetes in Italy: 2001–2010. PLOS ONE 2014;9(1):e86405.
  • [2] Harvey ZT, Potter BK, Vandersea J, Wolf E. Prosthetic advances. J Surg Orthop Adv 2012;21(1):58.
  • [3] Johansson JL, Sherrill DM, Riley PO, Bonato P, Herr H. A clinical comparison of variable-damping and mechanically passive prosthetic knee devices. Am J Phys Med Rehab 2005;84(8):563–75.
  • [4] Kaufman KR, Frittoli S, Frigo CA. Gait asymmetry of transfemoral amputees using mechanical and microprocessor-controlled prosthetic knees. Clin Biomech 2012;27(5):460–5.
  • [5] Bellmann M, Schmalz T, Blumentritt S. Comparative biomechanical analysis of current microprocessor- controlled prosthetic knee joints. Arch Phys Med Rehab 2010;91(4):644–52.
  • [6] Strike S, Hillery M. The design and testing of a composite lower limb prosthesis. Proc Inst Mech Eng H: J Eng Med 2000;214(6):603–14.
  • [7] Versluys R, Desomer A, Lenaerts G, Beyl P, Van Damme M, Vanderborght B, et al. From conventional prosthetic feet to bionic feet: a review study. 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, IEEE. 2008. pp. 49–54.
  • [8] I. 10328:2006, Prosthetics – Structural testing of lower-limb prostheses – Requirements and test methods.
  • [9] Fite K, Mitchell J, Sup F, Goldfarb M. Design and control of an electrically powered knee prosthesis. 2007 IEEE 10th International Conference on Rehabilitation Robotics, IEEE. 2007. pp. 902–5.
  • [10] Sup F, Bohara A, Goldfarb M. Design and control of a powered transfemoral prosthesis. Int J Robot Res 2008;27 (2):263–73.
  • [11] Hao L, Xu X, Cheng J. A test-bed for above-knee intelligent prosthesis. 2006 IEEE International Conference on Robotics and Biomimetics, IEEE. 2006. pp. 1311–5.
  • [12] Natsakis T, Burg J, Dereymaeker G, Jonkers I, Vander Sloten J. Inertial control as novel technique for in vitro gait simulations. J Biomech 2015;48(2):392–5.
  • [13] Giberti H, Resta F, Sabbioni E, Vergani L, Colombo C, Verni G, et al. Development of a bench for testing leg prosthetics. Special topics in structural dynamics, vol. 6. Springer; 2013. p. 35–45.
  • [14] Zhang J, Shen L, Shen L, Li A. Gait analysis of powered bionic lower prosthesis. 2010 IEEE International Conference on Robotics and Biomimetics (ROBIO), IEEE. 2010. pp. 25–9.
  • [15] Richter H, Simon D, Smith WA, Samorezov S. Dynamic modeling, parameter estimation and control of a leg prosthesis test robot. Appl Math Model 2015;39(2):559–73.
  • [16] Kim J-H, Oh J-H. Development of an above knee prosthesis using MR damper and leg simulator. Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation, 2001, Vol. 4, IEEE; 2001. p. 3686–91.
  • [17] Aubin PM, Cowley MS, Ledoux WR. Gait simulation via a 6- dof parallel robot with iterative learning control. IEEE Trans Biomed Eng 2008;55(3):1237–40.
  • [18] Thiele J, Gallinger S, Seufert P, Kraft M. The gait simulator for lower limb exoprostheses – overview and first measurements for comparison of microprocessor controlled knee joints. Facta Universitatis Series: Mech Eng 2015;13(3):193–203.
  • [19] Pejhan S, Farahmand F, Parnianpour M. Design optimization of an above-knee prosthesis based on the kinematics of gait. 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE. 2008. pp. 4274–7.
  • [20] Dollar AM, Herr H. Lower extremity exoskeletons and active orthoses: challenges and state-of-the-art. IEEE Trans Robot 2008;24(1):144–58.
  • [21] Zoss AB, Kazerooni H, Chu A. Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX). IEEE/ASME Trans Mechatron 2006;11(2):128–38.
  • [22] Veneman JF, Kruidhof R, Hekman EE, Ekkelenkamp R, Van Asseldonk EH, Van Der Kooij H. Design and evaluation of the lopes exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehab Eng 2007;15 (3):379–86.
  • [23] Wu G, Cavanagh PR. ISB recommendations for standardization in the reporting of kinematic data. J Biomech 1995;28(10):1257–61.
  • [24] Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, et al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion. Part I: Ankle, hip, and spine. J Biomech 2002;35(4):543–8.
  • [25] Cappozzo A. Gait analysis methodology. Hum Mov Sci 1984;3(1–2):27–50.
  • [26] Chao E, Laughman R, Schneider E, Stauffer R. Normative data of knee joint motion and ground reaction forces in adult level walking. J Biomech 1983;16(3):219–33.
  • [27] Marinelli C, Giberti H, Resta F. Conceptual design of a gait simulator for testing lower-limb active prostheses. 2015 16th International Conference on Research and Education in Mechatronics (REM), IEEE. 2015. pp. 314–20.
  • [28] Zhang H, Zhen Z, Wei Q, Chang W. The position/force control with self-adjusting select-matrix for robot manipulators. Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation, 2001, Vol. 4, IEEE; 2001. p. 3932–6.
  • [29] Giberti H, Cinquemani S, Legnani G. A practical approach to the selection of the motor-reducer unit in electric drive systems. Mech Based Des Struct Mach 2011;39(3):303–19.
  • [30] Giberti H, Clerici A, Cinquemani S. Specific accelerating factor: one more tool in motor sizing projects. Mechatronics 2014;24(7):898–905.
  • [31] Tarabini M, Solbiati S, Saggin B, Scaccabarozzi D. Apparent mass matrix of standing subjects exposed to multi-axial whole-body vibration. Ergonomics 2015;1–12.
  • [32] Saggin B, Scaccabarozzi D, Tarabini M. Metrological performances of a plantar pressure measurement system. IEEE Trans Instrum Meas 2013;62(4):766–76.
  • [33] Tarabini M, Saggin B, Scaccabarozzi D, Lanfranchi G. Estimation of the orthosis-limb contact pressure through thermal imaging. 2012 IEEE I2MTC – International Instrumentation and Measurement Technology Conference, Proceedings; 2012. p. 2733–7.
  • [34] Schaper U, Sawodny O, Mahl T, Blessing U. Modeling and torque estimation of an automotive dual mass flywheel. 2009 American Control Conference, IEEE. 2009. pp. 1207–12.
  • [35] Shandiz MA, Farahmand F, Osman NAA, Zohoor H. A robotic model of transfemoral amputee locomotion for design optimization of knee controllers. Int J Adv Robot Syst 2013;10.
  • [36] Righettini P, Giberti H. A non-linear controller for trajectory tracking of pneumatic cylinders. International Workshop on Advanced Motion Control, AMC. 2002. pp. 396–401.
  • [37] Righettini P, Giberti H, Strada R. A novel in field method for determining the flow rate characteristics of pneumatic servo axes. J Dyn Syst Meas Control Trans ASME 2013;135(4).
  • [38] Sanville F. A new method of specifying the flow capacity of pneumatic fluid power valves. Hydraul Pneum Power 1971;17(195):120–6.
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.