PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessing soil environmental capacity on different land uses in a suburban area of Chengdu, China

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Wenjiang (China) is the area which undertakes high-intensity planting activities. Additionally, the soil environmental capacity has been a hot area of research as it plays a key role in environmental protection planning, environmental impact assessment and sustainable development. In this paper, the static model of soil environmental capacity is employed to investigate the distribution of residual soil environmental capacity in Wenjiang. The results show that the soil environmental capacity of mercury is the largest for industrial land while it is the lowest in garlic-rice planting areas; the soil environmental capacity of arsenic is the largest in city construction land while it is the lowest in ecological conservation zone; the soil environmental capacity of lead is the largest in city construction land while it is the lowest in garlic-rice planting areas; and the soil environmental capacity of chromium is the largest in city construction land while it is the lowest in garlic-rice planting areas.
Rocznik
Strony
55--67
Opis fizyczny
Bibliogr. 26 poz., tab., rys.
Twórcy
autor
  • College of Environmental Science, Sichuan Agricultural University, Chengdu, 610031, Sichuan, P.R. China
  • Institute of Ecological and Environmental Science, Sichuan Agricultural University, Chengdu, 611130, Sichuan, P.R. China
autor
  • College of Environmental Science, Sichuan Agricultural University, Chengdu, 610031, Sichuan, P.R. China
autor
  • Institute of Ecological and Environmental Science, Sichuan Agricultural University, Chengdu, 611130, Sichuan, P.R. China
  • College of Environmental Science, Sichuan Agricultural University, Chengdu, 610031, Sichuan, P.R. China
autor
  • Chengdu Vocational and Technical College of Industry, Chengdu, 610218, P.R. China
autor
  • Institute of Ecological and Environmental Science, Sichuan Agricultural University, Chengdu, 611130, Sichuan, P.R. China, zhangjing@sicau.edu.cn
  • College of Environmental Science, Sichuan Agricultural University, Chengdu, 610031, Sichuan, P.R. China
autor
  • Institute of Ecological and Environmental Science, Sichuan Agricultural University, Chengdu, 611130, Sichuan, P.R. China
  • College of Environmental Science, Sichuan Agricultural University, Chengdu, 610031, Sichuan, P.R. China
autor
  • Institute of Ecological and Environmental Science, Sichuan Agricultural University, Chengdu, 611130, Sichuan, P.R. China
  • College of Environmental Science, Sichuan Agricultural University, Chengdu, 610031, Sichuan, P.R. China
autor
  • College of Environmental Science, Sichuan Agricultural University, Chengdu, 610031, Sichuan, P.R.China
autor
  • College of Forestry, Sichuan Agricultural University, Chengdu, 610030, Sichuan, P.R. China
autor
  • College of Environmental Science, Sichuan Agricultural University, Chengdu, 610031, Sichuan, P.R.China
Bibliografia
  • [1] ZHANG J., ZHANG L.Y., ZHANG J.M., DENG S.H., ZHANG Y.Z., LI Y.W., SHEN F., YANG G., SONG C., Theoretical relationship between energy consumption and economic output, Energ. Source Part B, 2016, 117, 643.
  • [2] SINGH A.S., ZWICKLE A., BRUSKOTTER J.T., WILSON R., The perceived psychological distance of climate change impacts and its influence on support for adaptation policy, Environ. Sci. Pol., 2017, 73, 93.
  • [3] GREEN P.A., VÖRÖSMARTY C.J., HARRISON I., FARRELL T., SÁENZ L., FEKETE B.M., Freshwater ecosystem services supporting humans. Pivoting from water crisis to water solutions, Global Environ. Chang., 2017, 34, 108.
  • [4] CHANG I., PRASIDHI A.K., IM J., SHIN H.D., CHO G.C., Soil treatment using microbial biopolymers for anti-desertification purposes, Geoderma, 2015, 253–254, 39.
  • [5] ZHANG J., ZHANG L.Y., DU M., ZHANG W., HUANG X., ZHANG Y.Q., YANG Y.Y., ZHANG J.M., DENG S.H., SHEN F., LI Y.W., XIAO H., Identifying the major air pollutants base on factor and cluster analysis, a case study in 74 Chinese cities, Atmos. Environ., 2016, 144, 37.
  • [6] ZHANG Y.J., HAO J.F., The evaluation of environmental capacity. Evidence in Hunan Province of China, Ecol. Indic., 2017, 60, 514.
  • [7] WILLIAMS A., DUPUY K., Deciding over nature. Corruption and environmental impact assessments, Environ. Impact Assess. Rev., 2016, 65, 118.
  • [8] HAN R., YU B.Y., TANG B.J., LIAO H., WEI Y.M., Carbon emissions quotas in the Chinese road transport sector. A carbon trading perspective, Energ. Pol., 2017, 106, 298.
  • [9] MARRUGO-NEGRETE J., PINEDO-HERNÁNDEZ J., DÍEZ S., Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia, Environ. Res., 2017, 154, 380.
  • [10] LI Z.Y., MA Z.W., VAN DER KUIJP T.J., YUAN Z.W., HUANG L., A review of soil heavy metal pollution from mines in China. Pollution and health risk assessment, Sci. Total Environ., 2014, 468–469, 843.
  • [11] LU Y.L., SONG S., WANG R.S., LIU Z.Y., MENG J., SWEETMAN A.J., JENKINS A., FERRIER R.C., LI H., LUO W., WANG T.Y., Impacts of soil and water pollution on food safety and health risks in China, Environ. Int., 2015, 77, 5.
  • [12] KELEPERTZIS E., Accumulation of heavy metals in agricultural soils of Mediterranean. Insights from Argolida basin, Peloponnese, Greece, Geoderma, 2014, 221–222 (27), 82.
  • [13] VALERA C.A., VALLE R.F. Jr., VARANDAS S.G.P., SANCHES FERNANDES L.F., PACHECO F.A.L., The role of environmental land use conflicts in soil fertility. A study on the Uberaba River basin, Brazil, Sci. Total Environ., 2016, 562, 463.
  • [14] GUO J.H., LIU X.J., ZHANG Y., SHEN J.L., HAN W.X., ZHANG W.F., CHRISTIE P., GOULDING P., VITOUSEK P.M., ZHANG F.S., Significant acidification in major Chinese croplands, Science, 2010, 327 (5968), 1008.
  • [15] ISLAM M.S., TANAKA M., Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: a review and synthesis, Mar. Pollut. Bull., 2004, 48 (7–8), 624.
  • [16] SHEN F., LIAO R.M., ALI A., MAHAR A., GUO D., LI R.H., SUN X.N., AWASTHI M.K., WANG Q., ZHANG Z.Q., Spatial distribution and risk assessment of heavy metals in soil near a Pb/Zn smelter in Feng County, China, Ecotox. Environ. Safe., 2017, 139, 254.
  • [17] JIA Z.M., CAI P.Y., CHEN Y., ZENG W.H., Regionalization of water environmental carrying capacity for supporting the sustainable water resources management and development in China, Res. Cons. Rec., 2018, 134, 282.
  • [18] LI J., RODRIGUEZ D., TANG X.Y., Effects of land lease policy on changes in land use, mechanization and agricultural pollution, Land Use Pol., 2017, 64, 405.
  • [19] TEPANOSYAN G., MAGHAKYAN N., SAHAKYAN L., SAGHATELYAN A., Heavy metals pollution levels and children health risk assessment of Yerevan kindergartens soils, Ecotox. Environ. Safe., 2017, 142, 257.
  • [20] SLOGI E., JAVAD P., Analysis and assessment of nickel chromium pollution in soils around Baghejar Chromite Mine of Sabzevar Ophiolite Belt, Northeastern Iran, Nonferr. Metal. Soc., 2015, 25 (7), 2380.
  • [21] PENG C., WANG M.E., CHEN W.P., CHANG A.C., CRITTENDEN J.C., Mass balance-based regression modeling of Cd and Zn accumulation in urban soils of Beijing, J. Environ. Sci., 2017, 53 (3), 99.
  • [22] CABRAL PINTO M.M.S., FERREIAR DA SILVA E., SILVA M.M.V.G., MELO-GONÇALVES P., Heavy metals of Santiago Island (Cape Verde) top soils: Estimated Background Value maps and environmental risk assessment, J. Afr. Earth Sci., 2015, 101, 162.
  • [23] CHARLET L., BLANCHO F., BONNET T., GARAMBOIS S., BOIVIN P., FERBER T., TISSERAND D., GUEDRON S., mercury pollution in a mountain valley: a combined geophysical and geochemical study, Proc. Earth Plan. Sci., 2017, 17, 77.
  • [24] CHAKRABORTY S., WEINDORF D.C., DEB S., LI B., PAUL S., CHOUDHURY A., RAY D.P., Rapid assessment of regional soil arsenic pollution risk via diffuse reflectance spectroscopy, Geoderma, 2017, 289, 72.
  • [25] MUZYCHENKO I., JAMALOVA G., MUSSINA U., KAZULIS V., BLUMBERGA D., Case study of lead pollution in the roads of Almaty, En. Proc., 2017, 113, 369.
  • [26] LOTFY S.M., MOSTAFA A.Z., Phytoremediation of contaminated soil with cobalt and chromium, J. Geochem. Explor., 2014, 144, 367.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d541ea0-6aea-4c29-8054-520fb58b7acf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.