Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-5d1e8910-40f0-4f14-85e9-e29d33fdbdab

Czasopismo

Journal of Power of Technologies

Tytuł artykułu

Effect of hydrogen addition on the catalytic combustion of fuel-lean carbon monoxide-air mixtures over platinum for micro-scale power generation applications

Autorzy Chen, J.  Yan, L.  Song, W.  Xu, D. 
Treść / Zawartość http://www.papers.itc.pw.edu.pl
Warianty tytułu
Języki publikacji EN
Abstrakty
EN The catalytic combustion of hydrogen and carbon monoxide over Pt/γ-Al2O3 catalyst was investigated numerically for H2/CO/O2/N2 mixtures with overall lean equivalence ratios ϕ = 0.117 .. 0.167, H2:CO molar ratios 1:1.5 .. 1:6, a pressure of 0.6 MPa, and a surface temperature range from 600 to 770 K relevant for micro-scale turbines and large gas turbine based power generation systems. Simulations were carried out with a two-dimensional CFD (Computational Fluid Dynamics) model in conjunction with detailed hetero-/homogeneous kinetic schemes and transports to explore the impact of hydrogen addition on catalytic combustion of carbon monoxide. The detailed reaction mechanisms were constructed by implementing recent updates to existing kinetic models. The simulation results indicated that the hydrogen addition kinetically promotes the catalytic combustion of carbon monoxide at wall temperatures as low as 600 K, whereby the catalytic reactions of hydrogen are fully lit-off and the conversion of carbon monoxide is mixed transport/kinetically controlled. Such a low temperature limit is of great interest to idling and part-load operation in large gas turbines and to normal operation for recuperative micro-scale turbine systems. Kinetic analysis demonstrated that the promoting impact of hydrogen addition on catalytic combustion of carbon monoxide is attributed to the indirect effect of hydrogen reactions on the surface species coverage, while direct coupling steps between hydrogen and carbon monoxide are of relatively minor importance. The added hydrogen inhibits the catalytic oxidation of carbon monoxide for wall temperatures below 520 K, which are well below the minimum inlet temperatures of reactants in micro-scale turbine based power generation systems.
Słowa kluczowe
PL spalanie katalityczne   promocja wodoru   tlenek węgla   gaz syntezowy   system wytwarzania energii  
EN catalytic combustion   hydrogen promotion   carbon monoxide   synthesis gas   power generation system  
Wydawca Institute of Heat Engineering, Warsaw University of Technology
Czasopismo Journal of Power of Technologies
Rocznik 2018
Tom Vol. 98, nr 1
Strony 161--169
Opis fizyczny Bibliogr. 60 poz., rys., tab., wykr.
Twórcy
autor Chen, J.
  • School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China, concjj@163.com
autor Yan, L.
  • School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China
autor Song, W.
  • School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China
autor Xu, D.
  • School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China
Bibliografia
[1] A. C. Fernandez-Pello, Micropower generation using combustion: Issues and approaches, Proceedings of the Combustion Institute 29 (1) (2002) 883–899.
[2] D. C. Walther, J. Ahn, Advances and challenges in the development of power-generation systems at small scales, Progress in Energy and Combustion Science 37 (5) (2011) 583–610.
[3] A. Mehra, X. Zhang, A. A. Ayón, I. A. Waitz, M. A. Schmidt, C. M. Spadaccini, A six-wafer combustion system for a silicon micro gas turbine engine, Journal of Microelectromechanical Systems 9 (4) (2000) 517–527.
[4] C. M. Spadaccini, J. Peck, I. A. Waitz, Catalytic combustion systems for microscale gas turbine engines, Journal of Engineering for Gas Turbines and Power 129 (1) (2005) 49–60.
[5] C. M. Spadaccini, A. Mehra, J. Lee, X. Zhang, S. Lukachko, I. A. Waitz, High power density silicon combustion systems for micro gas turbine engines, Journal of Engineering for Gas Turbines and Power 125 (3) (2003) 709–719.
[6] K. Isomura, M. Murayama, S. Teramoto, K. Hikichi, Y. Endo, S. Togo, S. Tanaka, Experimental verification of the feasibility of a 100 w class micro-scale gas turbine at an impeller diameter of 10 mm, Journal of Micromechanics and Microengineering 16 (9) (2006) 254–261.
[7] K. Isomura, S. Tanaka, S. Togo, H. Kanebako, M. Murayama, N. Saji, F. Sato, M. Esashi, Development of micromachine gas turbine for portable power generation, JSME International Journal Series B Fluids and Thermal Engineering 47 (3) (2004) 495–464.
[8] A. H. Epstein, micro-electro-mechanical systems gas turbine engines, Journal of Engineering for Gas Turbines and Power 126 (2) (2004) 205–226.
[9] T. Singh, R. Marsh, G. Min, Development and investigation of a noncatalytic self-aspirating meso-scale premixed burner integrated thermoelectric power generator, Energy Conversion and Management 117 (2016) 431–441.
[10] E. D. Tolmachoff, W. Allmon, C. M. Waits, Analysis of a high throughput n-dodecane fueled heterogeneous/homogeneous parallel plate microreactor for portable power conversion, Applied Energy 128 (2014) 111–118.
[11] Z. Zhang, W. Yuan, J. Deng, Y. Tang, Z. Li, K. Tang, Methanol catalytic micro-combustor with pervaporation-based methanol supply system, Chemical Engineering Journal 283 (2016) 982–991.
[12] C. H. Leu, S. C. King, J. M. Huang, C. C. Chen, S. S. Tzeng, C. I. Lee, W. C. Chang, C. C. Yang, Visible images of the catalytic combustion of methanol in a micro-channel reactor, Chemical Engineering Journal 226 (2013) 201–208.
[13] A. Brambilla, M. Schultze, C. E. Frouzakis, J. Mantzaras, R. Bombach, K. Boulouchos, An experimental and numerical investigation of premixed syngas combustion dynamics in mesoscale channels with controlled wall temperature profiles, Proceedings of the Combustion Institute 35 (3) (2015) 3429–3437.
[14] R. Sui, N. I. Prasianakis, J. Mantzaras, N. Mallya, J. Theile, D. Lagrange, M. Friess, An experimental and numerical investigation of the combustion and heat transfer characteristics of hydrogen-fueled catalytic microreactors, Chemical Engineering Science 141 (2016) 214–230.
[15] P. M. Allison, J. F. Driscoll, M. Ihme, Acoustic characterization of a partially-premixed gas turbine model combustor: Syngas and hydrocarbon fuel comparisons, Proceedings of the Combustion Institute 34 (2) (2013) 3145–3153.
[16] M. Gieras, T. Stankowski, Computational study of an aerodynamic flow through a micro-turbine engine combustor, Journal of Power Technologies 92 (2) (2012) 68–79.
[17] S. K. Aggarwal, D. Bongiovanni, M. Santarelli, Extinction of laminar diffusion flames burning the anodic syngas fuel from solid oxide fuel cell, International Journal of Hydrogen Energy 40 (22) (2015) 7214–7230.
[18] . Aydın, H. Nakajima, T. Kitahara, Current and temperature distributions in-situ acquired by electrode-segmentation along a microtubular solid oxide fuel cell operating with syngas, Journal of Power Sources 293 (2015) 1053–1061.
[19] Y. Zhang, W. Shen, H. Zhang, Y. Wu, J. Lu, Effects of inert dilution on the propagation and extinction of lean premixed syngas/air flames, Fuel 157 (2015) 115–121.
[20] W. Jerzak, M. Kuźnia, M. Zajemska, The effect of adding co2 to the axis of natural gas combustion flames on co and nox concentrations in the combustion chamber, Journal of Power Technologies 94 (3) (2014) 202–210.
[21] S. Morel, The afterburning of carbon monoxide in natural gas combustion gases in the presence of catalytic ceramic coatings, Journal of Power Technologies 92 (2) (2012) 109–114.
[22] A. Liu, B. Wang, W. Zeng, L. Chen, Experimental study of ch4 catalytic combustion on different catalyst, Journal of Power Technologies 93 (3) (2013) 142–148.
[23] A. Brambilla, C. E. Frouzakis, J. Mantzaras, R. Bombach, K. Boulouchos, Flame dynamics in lean premixed co/h2/air combustion in a mesoscale channel, Combustion and Flame 161 (5) (2014) 1268–1281.
[24] A. J. Santis-Alvarez, M. Nabavi, N. Hild, D. Poulikakos, W. J. Stark, A fast hybrid start-up process for thermally self-sustained catalytic nbutane reforming in micro-sofc power plants, Energy & Environmental Science 4 (8) (2011) 3041–3050.
[25] J. Thormann, L. Maier, P. Pfeifer, U. Kunz, O. Deutschmann, K. Schubert, Steam reforming of hexadecane over a rh/ceo2 catalyst in microchannels: Experimental and numerical investigation, International Journal of Hydrogen Energy 34 (12) (2009) 5108–5120.
[26] G. D. Stefanidis, D. G. Vlachos, N. S. Kaisare, M. Maestri, Methane steam reforming at microscales: Operation strategies for variable power output at millisecond contact times, AIChE Journal 55 (1) (2009) 180–191.
[27] A. B. Mhadeshwar, D. G. Vlachos, Hierarchical multiscale mechanism development for methane partial oxidation and reforming and for thermal decomposition of oxygenates on rh, The Journal of Physical Chemistry B 109 (35) (2005) 16819–16835.
[28] A. B. Mhadeshwar, D. G. Vlachos, Is the water-gas shift reaction on pt simple?: Computer-aided microkinetic model reduction, lumped rate expression, and rate-determining step, Catalysis Today 105 (1) (2005) 162–172.
[29] A. B. Mhadeshwar, D. G. Vlachos, Microkinetic modeling for waterpromoted co oxidation, water-gas shift, and preferential oxidation of co on pt, The Journal of Physical Chemistry B 108 (39) (2004) 15246–15258.
[30] M. Schultze, J. Mantzaras, F. Grygier, R. Bombach, Hetero-/homogeneous combustion of syngas mixtures over platinum at fuelrich stoichiometries and pressures up to 14 bar, Proceedings of the Combustion Institute 35 (2) (2015) 2223–2231.
[31] X. Zheng, J. Mantzaras, R. Bombach, Kinetic interactions between hydrogen and carbon monoxide oxidation over platinum, Combustion and Flame 161 (1) (2014) 332–346.
[32] J. Mantzaras, Catalytic combustion of syngas, Combustion Science and Technology 180 (6) (2008) 1137–1168.
[33] M. Sun, E. B. Croiset, R. R. Hudgins, P. L. Silveston, M. Menzinger, Steady-state multiplicity and superadiabatic extinction waves in the oxidation of co/h2 mixtures over a pt/al2o3-coated monolith, Industrial & Engineering Chemistry Research 42 (1) (2003) 37–45.
[34] J. A. Federici, D. G. Vlachos, Experimental studies on syngas catalytic combustion on pt/al2o3 in a microreactor, Combustion and Flame 158 (12) (2011) 2540–2543.
[35] Y. Ghermay, J. Mantzaras, R. Bombach, Experimental and numerical investigation of hetero-/homogeneous combustion of co/h2/o2/n2 mixtures over platinum at pressures up to 5 bar, Proceedings of the Combustion Institute 33 (2) (2011) 1827–1835.
[36] S. Eriksson, M. Wolf, A. Schneider, J. Mantzaras, F. Raimondi, M. Boutonnet, S. Järås, Fuel-rich catalytic combustion of methane in zero emissions power generation processes, Catalysis Today 117 (4)(2006) 447–453.
[37] S. Eriksson, A. Schneider, J. Mantzaras, M. Wolf, S. JärÅs, Experimental and numerical investigation of supported rhodium catalysts for partial oxidation of methane in exhaust gas diluted reaction mixtures, Chemical Engineering Science 62 (15) (2007) 3991–4011.
[38] A. Schneider, J. Mantzaras, P. Jansohn, Experimental and numerical investigation of the catalytic partial oxidation of ch4/o2 mixtures diluted with h2o and co2 in a short contact time reactor, Chemical Engineering Science 61 (14) (2006) 4634–4649.
[39] J. Duan, L. Sun, G. Wang, F. Wu, Nonlinear modeling of regenerative cycle micro gas turbine, Energy 91 (2015) 168–175.
[40] FLUENT, Fluent 6.3 user’s guide, Tech. rep., Fluent Inc., Lebanon, New Hampshire, USA (2006).
[41] J. Mantzaras, C. Appel, P. Benz, U. Dogwiler, Numerical modelling of turbulent catalytically stabilized channel flow combustion, Catalysis Today 59 (1-2) (2000) 3–17.
[42] J. Mantzaras, P. Benz, An asymptotic and numerical investigation of homogeneous ignition in catalytically stabilized channel flow combustion, Combustion and Flame 119 (4) (1999) 455–472.
[43] J. Mantzaras, C. Appel, Effects of finite rate heterogeneous kinetics on homogeneous ignition in catalytically stabilized channel flow combustion, Combustion and Flame 130 (4) (2002) 336–351.
[44] D. G. Norton, D. G. Vlachos, Combustion characteristics and flame stability at the microscale: a cfd study of premixed methane/air mixtures, Chemical Engineering Science 58 (21) (2003) 4871–4882.
[45] D. G. Norton, D. G. Vlachos, A cfd study of propane/air microflame stability, Combustion and Flame 138 (1-2) (2004) 97–107.
[46] O. Deutschmann, L. Maier, U. Riedel, A. H. Stroeman, R. W. Dibble, Hydrogen assisted catalytic combustion of methane on platinum, Catalysis Today 59 (1-2) (2000) 141–150.
[47] C. Appel, J. Mantzaras, R. Schaeren, R. Bombach, A. Inauen, B. Kaeppeli, B. Hemmerling, A. Stampanoni, An experimental and numerical investigation of homogeneous ignition in catalytically stabilized combustion of hydrogen/air mixtures over platinum, Combustion and Flame 128 (4) (2002) 340–368.
[48] M. Schultze, J. Mantzaras, Hetero-/homogeneous combustion of hydrogen/ air mixtures over platinum: Fuel-lean versus fuel-rich combustion modes, International Journal of Hydrogen Energy 38 (25) (2013) 10654–10670.
[49] J. Koop, O. Deutschmann, Detailed surface reaction mechanism for ptcatalyzed abatement of automotive exhaust gases, Applied Catalysis B: Environmental 91 (1-2) (2009) 47–58.
[50] Y. Ghermay, J. Mantzaras, R. Bombach, Effects of hydrogen preconversion on the homogeneous ignition of fuel-lean h2/o2/n2/co2 mixtures over platinum at moderate pressures, Combustion and Flame 157 (10) (2010) 1942–1958.
[51] Y. Ghermay, J. Mantzaras, R. Bombach, K. Boulouchos, Homogeneous combustion of fuel-lean h2/o2/n2 mixtures over platinum at elevated pressures and preheats, Combustion and Flame 158 (8) (2011) 1491–1506.
[52] U. Dogwiler, P. Benz, J. Mantzaras, Two-dimensional modelling for catalytically stabilized combustion of a lean methane-air mixture with elementary homogeneous and heterogeneous chemical reactions, Combustion and Flame 116 (1-2) (1999) 243–258.
[53] J. Li, Z. Zhao, A. Kazakov, M. Chaos, F. L. Dryer, J. J. S. Jr., A comprehensive kinetic mechanism for co, ch2o, and ch3oh combustion, International Journal of Chemical Kinetics 39 (3) (2007) 109–136.
[54] M. P. Burke, M. Chaos, Y. Ju, F. L. Dryer, S. J. Klippenstein, Comprehensive h2/o2 kinetic model for high-pressure combustion, International Journal of Chemical Kinetics 44 (7) (2012) 444–474.
[55] R. J. Kee, F. M. Rupley, E. Meeks, J. A. Miller, Chemkin-iii: A fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics, Tech. Rep. Report No. SAND96-8216, Sandia National Laboratories, Livermore, CA (USA) (1996).
[56] M. E. Coltrin, R. J. Kee, F. M. Rupley, E. Meeks, Surface chemkin-iii: A fortran package for analyzing heterogeneous chemical kinetics at a solid-surface - gas-phase interface, Tech. Rep. Report No. SAND96-8217, Sandia National Laboratories, Livermore, CA (USA) (1996).
[57] R. J. Kee, G. Dixon-Lewis, J. Warnatz, M. E. Coltrin, J. A. Miller, H. K. Moffat, A fortran computer code package for the evaluation of gasphase, multicomponent transport properties, Tech. Rep. Report No. SAND86-8246B, Sandia National Laboratories, Livermore, CA (USA)(1998).
[58] C. H. Kuo, P. D. Ronney, Numerical modeling of non-adiabatic heatrecirculating combustors, Proceedings of the Combustion Institute 31 (2) (2007) 3277–3284.
[59] A. K. Chaniotis, D. Poulikakos, Modeling and optimization of catalytic partial oxidation methane reforming for fuel cells, Journal of Power Sources 142 (1-2) (2005) 184–193.
[60] E. Meeks, H. K. Moffat, J. F. Grcar, R. J. Kee, Aurora: A fortran program for modeling well stirred plasma and thermal reactors with gas and surface reactions, Tech. Rep. Report No. SAND96-8218, Sandia National Laboratories, Livermore, CA (USA) (1996).
Uwagi
PL Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-5d1e8910-40f0-4f14-85e9-e29d33fdbdab
Identyfikatory