Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of the variability of the elastics properties on plastic zone and fatigue crack growth

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Several theoretical models have been proposed to predict the fatigue crack growth range (FCGR) process using solid mechanics, based theoretical tools and basic or fundamental mechanical properties. Moreover crack growth is linked to the existence of a plastic zone at the crack tip when the formation and intensification are accompanied by dissipation of energy. The overall objective of the present research is to develop, verify, and extend the computational efficiency of the model for fatigue crack growth range (FCGR) function by elastic properties, cyclic hardening and celebrated Paris law. The influence of the variability to elastic properties (Young’s modulus E, tensile strength e and cyclic hardening exponent n’) is a necessary analysis in this work. The predictions of the proposed model were compared with experimental data obtained by [1].
Opis fizyczny
Bibliogr. 36 poz., wykr.
  • Department of Mechanical Engineering-Faculty of Technology, Djillali Liabes University of Sidi Bel Abbes, Algeria,
  • Department of Mechanical Engineering-Faculty of Technology, Djillali Liabes University of Sidi Bel Abbes, Algeria,
  • [1] Ould Chikh, B., Imad, A., Benguediab, M.: Influence of the cyclic plastic zone size on the propagation of the fatigue crack in case of 12NC6 steel, Computational Mat. Science 43, 1010-1017, 2008.
  • [2] Paris, P. C., Erdogan, F.: A critical analysis of crack propagation laws, Trans. ASM, J. of Basic. Eng., 85, 528-534, 1963.
  • [3] Broek, D., Schijve J.: Rapport No. NLR-TR-101-361, National Aeronautical and Astronautical Research Institute, Amsterdam, 1963.
  • [4] Forman, R. G.: J. Basic Eng., vol. 89, 1967, pp 459-464.
  • [5] Bathias, C., Gateau, M., Philippe, J.: Influence of relationship between minimal and maximal strength on speed of fatigue cracking in light alloys, Rev. Met., 559-569, 1976.
  • [6] Crocker, T. W., Cooley, L. A., Lange, E. A., Freed, C. N.: Transactions of the American Society of Mechanical Eng., 61, 568-574, 1968.
  • [7] Hudson, C. M., Scardina, J. T.: Effect of stress ratio on fatigue-crack growth in 7075-T6 aluminum-alloy sheet, Eng. Fra. Mech., 1, 429-446, 1969.
  • [8] Richards, C. E., Lindley, T. C.: The influence of stress intensity and microstructure on fatigue crack propagation in ferritic materials, Eng. Fra. Mech., 4, 4, 951-978, 1972.
  • [9] Bilby, B. A., Cottrell, A. H., Swinden, K. H.: Spread of plastic yield from a notch, Proc. Roy. SOC., A272, 304-314, 1963.
  • [10] Elber, W.: Fatigue crack closure under cyclic tension, Eng. Fra. Mech., 2, 37-45, 1970.
  • [11] McClintock, F. A.: Fatigue crack propagation, ASTM. STP, 415, 170, 1967.
  • [12] Lardner, R. W.: A dislocation model for fatigue crack growth in metals, Phil. Mag., 17, 71-82, 1986.
  • [13] Pearson, S.: Fatigue crack propagation in metals, Nature, 21, 1, 1077-1078, 1966.
  • [14] Dugdale, D. S.: Yielding of steel sheets containing slits, J. Mech. Physic Solids, 8, 100-104, 1960.
  • [15] Leiting D., Robert H., Satya, N. A.: tOn Improving the Celebrated Paris’ Power Law for Fatigue, by Using Moving Least Squares. CMC: Computers, Materials & Continua, 45, 1, 1-15, 2015.
  • [16] Duggan, T. V.: A theory for fatigue crack propagation, Eng. Fra. Mech., 9, 735-747, 1977.
  • [17] McClintock, F. A.: On the plasticity of the growth of fatigue cracks, Fra. of Solids, John Wiley, New York, 1963.
  • [18] Radon, J. C.: tA model for fatigue crack growth in a threshold region, Int. J. Fatigue, 1982.
  • [19] Pook, L. P., Frost, N. E.: Fatigue crack growth theory, Int. J. Fra., 9, 53-61,1973.
  • [20] Lal, D. N., Weiss, V.: Notch analysis of fracture approach to fatigue crack- propagation, Met. Trans., A, 9A, 413-426, 1978.
  • [21] Purushothaman, S., Tien, J. K.: A fatigue crack growth mechanism for ductile materials, Scripta Met., 9, 923-926, 1975.
  • [22] Lal, K. M., Garg, S. B. L.: A fatigue crack propagation model For strain hardening materials, Eng. Fra. Mech., 9, 939-949, 1977.
  • [23] Tomkins, B.: Fatigue crack propagation, an analysis, Phil. Mag., 18, 1041-1066, 1968.
  • [24] Pugno, N., Ciavarella, M., Cornetti, P., Carpinteri, A.: A generalized Paris' law for fatigue crack growth, J. of the Mech. and Physics of Solids, 54, 1333-1349, 2006.
  • [25] Patel, S. K., Dattaguru, B., Ramachandra, K.: tInteraction Multiple Interacting and Coalescing Semi-Elliptical Surface Cracks in Fatigue-Part II: Experimental Study, Structural Longevity, 3, 1, pp. 59-86, 2010.
  • [26] Benachour, M., Belmokhtar, A., Benachour, N., Benguediab, M.: Enhanced exponential fatigue crack growth model for al-alloy, AASCIT J. of Mat., 3, 57-63, 2015.
  • [27] Mohanty, J. R., Verma, B. B., Ray, P. K.: tPrediction of fatigue crack growth and residual life using an exponential model: Part I (constant amplitude loading), Int. J. of Fatigue, 31, 418-424, 2009.
  • [28] Shi, K. K., Cai, L. X., Qi, S., Bao, C.: A prediction model for fatigue crack growth using effective cyclic plastic zone and low cycle fatigue properties, Eng. Fra. Mech., 158, 209-219, 2016.
  • [29] Manson, S. S.: Behavior of materials under conditions of thermal stress, Heat Transfer Symposium, University of Michigan Engineering Research Institute, 9-71, 1953.
  • [30] Glinka, G. A.: Notch Stress-strain Analysis Approach to Fatigue Crack Growth, Eng. Fra. Mech., 21, 2, 245-261, 1985.
  • [31] Paul, S.K., Tarafder, S.: Cyclic plastic deformation response at fatigue crack tips, Int. J.of Pressure Vessels and Piping, 101, 81-90, 2013.
  • [32] Jingjie, C., Yi, H., Leilei, D., Yugang, L.: A new method for cyclic cracktip plastic zone size determination under cyclic tensile load, Eng. Fra. Mech., 126, 141-154, 2014.
  • [33] Tien-Dung, D. O.: Study of plastic zone in crack tip in aluminum alloy 2024 T351, Ph. D. Thesis, University Francois Rabelais of Tours (France), 2013.
  • [34] Chang, T., Guo, W.: Effects of strain hardening and stress state on fatigue crack closure, Int. J. of Fatigue, 21, 881-888, 1999.
  • [35] Lin, X. Z., Chen, D. L.: Strain controlled cyclic deformation behavior of an extruded magnesium alloy, Mat. Science and Eng., A 496, 106-113, 2008.
  • [36] Hama, T., Nagao, H., Kuchinomachi, Y., Takuda, H.: Effect of pre-strain on work-hardening behavior of magnesium alloy sheets upon cyclic loading, Mat. Science and Engineering, A591, 69-77, 2014.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.