Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button


Polish Maritime Research

Tytuł artykułu

Numerical model to study the combustion process and emissions in the Wartsila 6L 46 four-stroke marine engine

Autorzy Lamas, M. I.  Rodriguez, C. G. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN The aim of the present paper is to develop a computational fluid dynamics (CFD) analysis to study the combustion process in a four-stroke marine diesel engine, the Wärtsilä 6L 46. The motivation comes from the importance of emissions from marine engines in the global emissions, particularly for nitrogen oxides (NOx) and sulfur oxides (SOx). The pressure and temperature fields were obtained, as well as the exhaust gas composition. In order to validate this work, the numerical results were satisfactory compared with experimental ones, which indicates that this model is accurate enough to reproduce the fluid pattern inside the cylinder during the combustion process. Accordingly, the aim of future works is to use this numerical procedure to optimize the performance and reduce the emissions of the new marine engine designs.
Słowa kluczowe
EN marine engine   emissions   combustion   CFD Computational Fluid Dynamics  
Wydawca Gdańsk University of Technology, Faculty of Ocean Engineering & Ship Technology
Czasopismo Polish Maritime Research
Rocznik 2013
Tom nr 2
Strony 61--66
Opis fizyczny Bibliogr. 16 poz., ryas., tab.
autor Lamas, M. I.
  • Escola Universitaria Politécnica. Universidade da Coruña. Avda. 19 de Febreiro s/n - 15405 Ferrol - A Coruña. SPAIN.,
autor Rodriguez, C. G.
  • Escola Universitaria Politécnica. Universidade da Coruña. Avda. 19 de Febreiro s/n - 15405 Ferrol - A Coruña. SPAIN.
1. Li, K; Li, B.; Sun, P.: Influence of fuel injection advance angle on nitrogen oxide emission from marine diesel engine. Journal of Dalian Maritime University 36(3), pp. 87-89, 2010.
2. Lü, L; Xu, J.H; Xu, W.Y.: Effect of diesel oil quality on particulate and smoke emissions from marine diesel engine. Chinese Internal Combustion Engine Engineering 31(4), pp. 44- 48, 2010.
3. Holub, M.; Kalisiak, S.; Borkowski, T., Myskow, J; Brandenburg, R.: The influence of direct non-thermal plasma treatment on particulate matter (PM) and NOx in the exhaust of marine diesel engines. Polish Journal of Environmental Studies 19(6), pp. 1199-1211, 2010.
4. Jayaram, V.; Nigam, A.; Welch, W.A.; Millar, J.W.; Cocker, I.I.: Effectiveness of emission control technologies for auxiliary engines on ocean-going vessels. Journal of the Air & Waste Management Association 61(1), pp. 14-21, 2011.
5. Yan, P; Feng, M.Z.; Ping, T.; Fang, W.C.; Wang, X.Q.: Simulation research on effect of nozzle parameters on combustion and emissions for HPCR marine diesel engine. Internal Combustion Engine Engineering 32(3), pp. 43-47, 2011.
6. Uriondo, Z.; Durán Grados, C.V.; Clemente, M.; Gutiérrez, J.M.; Martín, L.: Effects of charged air temperature and pressure on NOx emissions of marine medium speed engines. Transportation research Part D: Transport and environment 16(4), pp. 288-295, 2011.
7. Bernecic, D.; Radonja, R.: The selective catalytic reduction (SCR) application on two stroke slow speed marine diesel engines. Pomorstvo 25(1), pp. 15-28, 2011.
8. Maiboom, A.; Tauzia, X. NOx and PM emissions reduction on an automotive HSDI Diesel engine with water-in-diesel emulsion and EGR: An experimental study. Fuel 90(11), pp. 3179-3192, 2011.
9. Duran, V.; Uriondo, Z.; Moreno-Gutiérrez, J.: The impact of marine engine operation and maintenance on emissions. Transportation research Part D: Transport and environment 17(1), pp. 54 -60, 2012.
10. Millo, F.; Bernandi, M.G.; Delneri, D.: Computational analysis of internal and external EGR strategies combined with miller cycle concept for a two-stage turbocharged medium speed marine diesel engine. SAE Paper 2011-01-1141, 2011.
11. Lamas, M.I.; Rodríguez, C.G.; Rebollido, J.M.: Numerical model to study the valve overlap period in the Wärtsilä 6L46 four-stroke marine engine. Polish Maritime Research 1(72), pp. 31-37, 2012.
12. Wärtsilä 46: Project guide for marine applications. 2001.
13. Zeldovitch, Y.B.; Sadovnikov, D.A.; Kamenetskii, F.: Oxidation of nitrogen in combustion. Institute of Chemical Physics, Moscow-Leningrad, 1947.
14. Lavoie, G.A.; Heywood, J.B.; Keck, J.C.: Experimental and theoretical investigation of nitric oxide formation in internal combustion engines. Combustion Science Technology 1, pp. 313-326, 1970.
15. Versteeg H.K., Malalasekera W.: An introduction to computational fluid dynamics: the finite volume method. 2nd Edition. Harlow: Pearson Education, 2007.
16. Taylor, C.F.: The internal combustion engine in theory and practice. 2nd Edition. MIT Press, 1985.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-5c9d5495-9251-4e71-8872-bb1fad26ab6a