Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-5bb62c09-630b-4322-ac30-d89d030961d5

Czasopismo

Oceanologia

Tytuł artykułu

Primary productivity in the Gulf of Riga (Baltic Sea) in relation to phytoplankton species and nutrient variability

Autorzy Purina, I.  Labucis, A.  Barda, I.  Jurgensone, I.  Aigars, J. 
Treść / Zawartość http://www.iopan.gda.pl/oceanologia/ http://www.sciencedirect.com/journal/oceanologia
Warianty tytułu
Języki publikacji EN
Abstrakty
EN The seasonal patterns of primary production, phytoplankton biomass, chlorophyll a, and nutrients were investigated in the central part of the Gulf of Riga (Baltic Sea) during 2011 and 2012. Annual primary productivity in the gulf was in the range of 353.4–376.2 gC m−2. Maximum carbon fixation rates occurred during the phytoplankton spring bloom from April to May when the winter nutrient pool was rapidly exhausted, suggesting the use of regenerated nutrients already in spring. The new production calculated on the draw-down of nitrates amounted to 51.80% of spring net community production. The production rates during summer were considerably lower owing to the availability of only regenerated nutrients and limited nitrogen fixation. Autumn was established as the least productive season. In autumn despite the elevated nutrient concentrations, the increasingly limited light hindered photosynthetic activity. Species governing the nutrient fluxes and the productivity of the Gulf of Riga are the diatom species responsible for new production in spring. The photosynthetic ciliate Mesodinium rubrum ((Lohmann) Hamburger & Buddenbrock 1911) prevailed in all seasons and significantly correlated with elevated productivity, while diazotrophic cyanobacteria Aphanizomenon flosaquae (Ralfs ex Bornet & Flahault 1886) contributed to new production in the summer nutrient regenerating system.
Słowa kluczowe
EN primary production   new production   Mesodinium rubrum   Aphanizomenon flosaquae   Gulf of Riga   Baltic Sea  
Wydawca Polish Academy of Sciences, Institute of Oceanology
Elsevier
Czasopismo Oceanologia
Rocznik 2018
Tom No. 60 (4)
Strony 544--552
Opis fizyczny Bibliogr. 48 poz., mapy, tab., wykr.
Twórcy
autor Purina, I.
autor Labucis, A.
  • Latvian Institute of Aquatic Ecology, Riga, Latvia
autor Barda, I.
  • Latvian Institute of Aquatic Ecology, Riga, Latvia
autor Jurgensone, I.
  • Latvian Institute of Aquatic Ecology, Riga, Latvia
autor Aigars, J.
  • Latvian Institute of Aquatic Ecology, Riga, Latvia
Bibliografia
[1] Alldredge, A. L., Gotschalk, C., Passow, U., Riebesell, U., 1995. Mass aggregation of diatom blooms: insights from a mesocosm study. Deep-Sea Res. 42, 9-27.
[2] Andrushaitis, G., Andrushaitis, A., Bitenieks, Y., Priede, S., Lenshs, E., 1992. Organic carbon balance of the Gulf of Riga. In: Swed. Hydrol. Meteor. Inst. Rep., Proc. 17th CBO Conf., Norrköping, p. 1009.
[3] Balode, M., Purina, I., Bechemin, C., Maestrini, S., 1998. Effects of nutrient enrichment on the growth rates and community structure of summer phytoplankton from the Gulf of Riga, Baltic Sea. J. Plankton Res. 20, 2251-2272.
[4] Berzinsh, V., 1995. Hydrology. In: Ojaveer, E. (Ed.), Ecosystem of the Gulf of Riga Between 1920 and 1990. Estonian Acad. Publ., Tallin, 7-31.
[5] Dugdale, R. C., Goering, J. J., 1967. Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol. Oceanogr. 12, 196-206.
[6] Edler, L., 1979. Recommendations on Methods for Marine Biological Studies in the Baltic Sea. Phytoplankton and Chlorophyll, vol. 5. Baltic Marine Biol. Publ., 38 pp.
[7] Eppley, R. W., Renger, E. H., Betzer, P. R., 1983. The residence time of particulate organic carbon in the surface layer of the ocean. Deep-Sea Res. 30, 311-323.
[8] Esteban, G. F., Fenchel, T., Finlay, B. J., 2010. Mixotrophy in ciliates. Protist 161 (5), 621-641, http://dx.doi.org/10.1016/j.protis.2010.08.002.
[9] Grasshoff, K., Ehrhardt, M., Kremling, K., 1983. Methods of Seawater Analysis, 2nd ed. Verlag Chemie, Weinheim, 600 pp.
[10] Heiskanen, A.-S., 1998. Factors Governing Sedimentation and Pelagic Nutrient Cycles in the Northern Baltic Sea. Monographs Boreal Environ. Res. 8. Finnish Environ. Inst., Helsinki, 80 pp.
[11] HELCOM, 2006. Manual of Marine Monitoring Programme in the COMBINE Programme of HELCOM, Part C, Retrieved from: http://www.helcom.fi/Documents/Action%20areas/Monitoring%20and%20assessment/Manuals%20and%20Guidelines/Manual%20for%20Marine%20Monitoring%20in%20the%20COMBINE%20Programme%20of%20HELCOM.pdf (accessed 04 2018).
[12] HELCOM, 2013. Review of the Fifth Baltic Sea Pollution Load Compilation for the 2013 HELCOM Ministerial Meeting. Balt. Sea Environ. Proc. No. 141 Retrieved from: http://www.helcom.fi/Lists/Publications/BSEP141.pdf (accessed 04 2018).
[13] Hirsch, R. M., Moyer, D. L., Archfield, S. A., 2010. Weighted regressions on time, discharge, and season (WRTDS), with an application to Chesapeake Bay river inputs. J. Am. Water Res. Assoc. 46 (5), 857-880, http://dx.doi.org/10.1111/j.1752-1688.2010.00482.x.
[14] Jonsson, P. R., Tiselius, P., 1990. Feeding behavior, prey detection and capture efficiency of the copepod Acartia tonsa feeding on planktonic ciliates. Mar. Ecol. Prog. Ser. 60, 35-44.
[15] Jurgensone, I., Carstensen, J., Ikauniece, A., Kalveka, B., 2011. Long-term changes and controlling factors of phytoplankton community in the Gulf of Riga (Baltic Sea). Estuar. Coast. 34 (6), 1205-1219, http://dx.doi.org/10.1007/s12237-011-9402-x.
[16] Kahru, M., Horstmann, U., Rud, O., 1994. Satellite detection of increased cyanobacteria blooms in the Baltic Sea: natural fluctuation or ecosystem change? Ambio 23 (8), 469-472.
[17] Kononen, K., Kuparinen, J., Mäkelä, K., Laanemts, J., Pavelson, J., Nommann, S., 1996. Initiation of cyanobacterial blooms in a frontal region at the entrance to the Gulf of Finland, Baltic Sea. Limnol. Oceanogr. 41, 98-112.
[18] Leppänen, J. M., Bruun, J. E., 1986. The role of pelagic ciliates including the autotrophic Mesodinium rubrum during the spring bloom of 1982 in the open northern Baltic proper. Ophelia 4, 147-157.
[19] Moeller, H. V., Johnson, M. D., Falkowski, P. G., 2011. Photoacclimation in the phototrophic marine ciliate Mesodinium rubrum (Ciliophora). J. Phycol. 47 (2), 324-332, http://dx.doi.org/10.1111/j.1529-8817.2010.00954.x.
[20] Olenina, I., Hajdu, S., Andersson, A., Edler, L., Wasmund, N., Busch, S., Göbel, J., Gromisz, S., Huseby, S., Huttunen, M., Jaanus, A., Kokkonen, P., Ledaine, I., Niemkiewicz, E., 2006. Biovolumes and size-classes of phytoplankton in the Baltic Sea. BSEP 106, 1-144.
[21] Olesen, M., Lundsgaard, C., Andrushaitis, A., 1999. Influence of nutrients and mixing on the primary production and community respiration in the Gulf of Riga. J. Mar. Syst. 23, 127-143.
[22] Olli, K., Clarke, A., Danielsson, Å., Aigars, J., Conley, D. J., Tamminen, T., 2008. Diatom stratigraphy and long-term silica concentrations in the Baltic Sea. J. Mar. Syst. 73 (3-4), 284-299, http://dx.doi.org/10.1016/j.jmarsys.2007.04.009.
[23] Olli, K., Heiskanen, A.-S., 1999. Seasonal stages of phytoplankton community structure and sinking loss in the Gulf of Riga. J. Mar. Syst. 23, 165-184.
[24] Platt, T., Harrison, W. G., Lewis, M. R., Li, W. K. W., Sathyendranath, S., Smith, R. E., Vezina, A. F., 1989. Biological production of the oceans: the case of consensus. Mar. Ecol. Prog. Ser. 52, 77-88.
[25] Ploug, H., Musat, N., Adam, B., Moraru, C. M., Lavik, G., Vagner, T., Bergman, B., Kuypers, M. M. M., 2010. Carbon and nitrogen fluxes associated with the cyanobacterium Aphanizomenon sp. in the Baltic Sea. ISME J. 4, 1215-1223, http://dx.doi.org/10.1038/ismej.2010.53.
[26] Põder, T., Maestrini, S. Y., Balode, M., Lips, U., Bèchemin, C., Andrushaitis, A., Purina, I., 2003. The role of inorganic and organic nutrients on the development of phytoplankton along the transect from Daugava River mouth to the Open Baltic in spring and summer 1999. ICES J. Mar. Sci. 60 (4), 827-835, http://dx.doi.org/10.1016/S1054-3139(03)00069-9.
[27] Rahm, L., Jönsson, A., Wulff, F., 2000. Nitrogen fixation in the Baltic Proper: an empirical study. J. Mar. Syst. 25 (3-4), 239-248, http://dx.doi.org/10.1016/S0924-7963(00)00018-X.
[28] Redfield, A. C., Ketchum, B. H., Richards, F. A., 1963. The influence of organisms on the composition of seawater. In: Hill, M. N. (Ed.), The Sea, vol. 2. Intersci. Publish. John Wiley & Sons, New York, 26-77.
[29] Rydberg, L., Edler, L., Floderus, S., Graneli, W., 1990. Interaction between supply of nutrients, primary production, sedimentation and oxygen consumption in SE Kattegatt. Ambio 19, 134-141.
[30] Sahlsten, E., Sörensen, F., Pettersson, K., 1988. Planktonic nitrogen uptake in the south-eastern Kattegat. J. Exp. Mar. Biol. Ecol. 121, 227-246.
[31] Sarthou, G., Timmermans, K. R., Blain, S., Treguer, P., 2005. Growth physiology and fate of diatoms in the ocean: a review. J. Sea Res. 53 (1-2), 25-42, http://dx.doi.org/10.1016/j.seares.2004.01.007.
[32] Schneider, B., Nausch, G., Nagel, K., Wasmund, N., 2003. The Surface water CO2 budget for the Baltic Proper: a new way to determine nitrogen fixation. J. Mar. Syst. 42 (1-2), 53-64, http://dx.doi.org/10.1016/S0924-7963(03)00064-2.
[33] Smayda, T. S., Reynolds, C. S., 2001. Community assembly in marine phytoplankton: application of recent models to harmful dinoflagellate blooms. J. Plankton Res. 23 (5), 447-461, http://dx.doi.org/10.1093/plankt/23.5.447.
[34] Smetacek, V., Bodungen, B. V., Knoppers, B., Peinert, R., Pollehne, F., Stegmann, P., Zeitzsehel, B., 1984. Seasonal stages in characterizing the annual cycle of an inshore pelagic system. Rapp. P-v. Rdun. Cons. mt. Explor. Mer 183, 126-135.
[35] Stigebrandt, A., Djurfeldt, L., 1996. Control of production of organic matter in the ocean on short and long terms by stratification and remineralisation. Deep-Sea Res. Pt. II 43 (1), 23-35.
[36] Stoecker, D. K., Putt, M., Davis, L. H., Michaels, A. E., 1991. Photosynthesis in Mesodinium rubrum: species specific measurements and comparison to community rates. Mar. Ecol. Prog. Ser. 73, 245-252.
[37] Tamminen, T., Seppälä, J., 1999. Nutrient pools, transformations, ratios, and limitation in the Gulf of Riga, the Baltic Sea, during four successional stages. J. Mar. Syst. 23, 83-106.
[38] Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt int. Verein. Theor. Angew. Limnol. 9, 1-38.
[39] Verity, P., Smetacek, V., 1996. Organism life cycles, predation, and the structure of marine pelagic ecosystems. Mar. Ecol. Prog. Ser. 130, 277-293.
[40] Vihma, T., Haapala, J., 2009. Geophysics of sea ice in the Baltic Sea: a review. Progr. Oceanogr. 80 (3-4), 129-148, http://dx.doi.org/10.1016/j.pocean.2009.02.002.
[41] Wasmund, N., Andrushaitis, A., Łsiak-Pastuszak, E., Müller-Karulis, B., Nausch, G., Neumann, T., Ojaveer, H., Olenina, I., Postel, L., Witek, Z., 2001. Trophic status of the south-eastern Baltic sea: a comparison of coastal and open areas. Estuar. Coast. Shelf Sci. 53 (6), 1-16, http://dx.doi.org/10.1006/ecss.2001.0828.
[42] Wasmund, N., Nausch, G., Feistel, R., 2013. Silicate consumption: an indicator for long-term trends in spring diatom development in the Baltic Sea. J. Plankton Res. 35 (2), 393-406, http://dx.doi.org/10.1093/plankt/fbs101.
[43] Wasmund, N., Nausch, G., Schneider, B., 2005. Primary production rates calculated by different concepts — an opportunity to study the complex production system in the Baltic Proper. J. Sea Res. 54 (4), 244-255, http://dx.doi.org/10.1016/j.seares.2005.07.004.
[44] Wassman, P., Tamminen, T., 1999. Pelagic eutrophication and sedimentation in the Gulf of Riga: a synthesis. J. Mar. Syst. 23, 269-283.
[45] Witek, M., 1998. Annual changes of abundance and biomass of planktonic ciliates in the Gdańsk Basin, southern Baltic. Int. Rev. Hydrobiol. 83, 163-182.
[46] Yurkovskis, A., 2004. Long-term land-based and internal forcing of the nutrient state of the Gulf of Riga (Baltic Sea). J. Mar. Syst. 50 (3-4), 181-197, http://dx.doi.org/10.1016/j.jmarsys.2004.01.004.
[47] Yurkovskis, A., Kostrichkina, E., Ikauniece, A., 1999. Seasonal succession and growth in the plankton communities of the Gulf of Riga in relation to long-term nutrient dynamics. Hydrobiologia 393, 83-94.
[48] Yurkovskis, A., Wulff, F., Rahm, L., Andrushaitis, A., Rodriguez-Medina, M., 1993. A nutrient budget of the Gulf of Riga, Baltic Sea. Estuar. Coast. Shelf Sci. 37, 113-127.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-5bb62c09-630b-4322-ac30-d89d030961d5
Identyfikatory
DOI 10.1016/j.oceano.2018.04.005