Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button


Archives of Metallurgy and Materials

Tytuł artykułu

Experimental – Numerical Analysis of Stress State in Front of the Crack Tip of Modified and Unmodified G17CrMo5-5 Cast Steel by Rare Earth Metals in a Brittle-Ductile Transition Region

Autorzy Dzioba, I.  Pala, A.  Kasinska, J. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN In the paper presented experimental data and numerical analysis of stress distribution in front of the crack of two melts of low-alloy G17CrMo5-5 cast steel-modified (M) by rare earth metals and original, unmodified (UM) in the temperature range, according to the brittle-ductile transition region. Experimental tests include determination of the tensile properties and fracture toughness characteristics for the UM and M cast steel. Numerical analysis includes determination of stress distribution in front of the crack at the initial moment of the crack extension. In the numerical computations, experimentally tested specimens SEN(B) were modeled. The true stress-strain curves for the UM and M cast steel were used in the calculation. It was shown that the maximum of the opening stresses at the initial moment of the crack extension occurs in the axis of the specimens and reaches similar level of about 3.5σ0 for both UM and M cast steel. However, the length of the critical distance, measured for stress level equal 3σ0, is great for the M in comparison to the UM cast steel. Also was shown that the UM cast steel increased the level of the stress state triaxiality parameters that resulted in a decrease of fracture toughness.
Słowa kluczowe
EN fracture toughness in a brittle-to-ductile transition region   stress distributions in front of the crack   cast steel   modification by rare earth metals  
Wydawca Polish Academy of Sciences, Committee of Metallurgy, Institute of Metallurgy and Materials Science
Czasopismo Archives of Metallurgy and Materials
Rocznik 2016
Tom Vol. 61, iss. 2B
Strony 1175--1181
Opis fizyczny Bibliogr. 21 poz., rys., tab., wykr., wzory
autor Dzioba, I.
  • Kielce University of Technology, 7th Tysiaclecia P. P. Av. 25-314 Kielce, Poland
autor Pala, A.
  • Kielce University of Technology, 7th Tysiąclecia P. P. Av. 25-314 Kielce, Poland
autor Kasinska, J.
[1] Long-Mei Wang, at al., Study of application of rare elements in advanced low alloy steels, Journal of Alloys and Compounds 451, 534-537 (2008).
[2] Heon Young Ha, Chan Jin Park, Hyuk Sang Kwon. Effect of misch metal on the formation of non-metallic inclusions in 25% Cr duplex stainless steels, Scripta Materialia 55, 991-994 (2006).
[3] M. Gajewski, J. Kasinska, Rare earth metals influence on mechanical properties and crack resistance of GP240GH and G17CrMo5-5 cast steels, Archives of Foundry Engineering 9, 37-44 (2009).
[4] K. Bolanowski, Structure and properties of MA-steel with rare earth elements addition, Archives of Metallurgy and Materials 50, 327-332 (2005).
[5] V. V. Luniov, Non metallic inclusions and properties of cast steels, Foundry Journals of the Polish Foundrymen’s Association 53, 9, 299-304 (2003) (in Polish).
[6] J. Kasinska, Wide-ranging influence of mischmetal on properties of G17CrMo5-5 cast steel, Metallurgija 54, 1, 135-138 (2015).
[7] F. A. McClintok, A criterion for ductile fracture by growth of holes, Journal of Applied Mechanics 35(4), 353-371 (1968).
[8] F.A. Beremin, A local criterion for cleavage fracture of a nuclear pressure vessel steel, Metallurgical Transaction A 14A, 2277-2287 (1983).
[9] A. Seweryn, Brittle Fracture criterion for structures with sharp notches, Engineering Fracture Mechanics 45(5), 673-681 (1994).
[10] R. O. Ritchie, J. F. Knott, J. R. Rice, On the relationship between critical tensile stress and fracture toughness in mild steel, Journal of the Mechanics and Physics of Solids 21, 395-410 (1973).
[11] J. F. Knott, Micromechanisms of fracture and fracture toughness of engineering alloys, ICF-4 Fracture 1977 Waterloo, Canada 1, 61-91 (1977).
[12] A. Neimitz, J. Galkiewicz, I. Dzioba, The ductile to cleavage transition in ferritic Cr-Mo-V steel: A detailed microscopic and numerical analysis, Engineering Fracture Mechanics 77, 2504-2526 (2010).
[13] I. Dzioba, The influence of the microstructural components on fracture toughness of 13HMF steel, Materials Science, 47 (5), 357-364 (2011).
[14] ASTM E1737-96. Standard Test Method for J-Integral Characterization of Fracture Toughness.
[15] ASTM E1820-09. Standard Test Method for Measurement of Fracture Toughness, Annual book of ASTM standards 03.01, 1070-1118 (2011).
[16] ASTM E1921-10. Standard Test Method for Determination of Reference Temperature, T0, for Ferritic Steels in the Transition Range, Annual book of ASTM standards 03.01, 1177-1198, (2011).
[17] I. Dzioba, P. Furmanczyk, J. Kasinska, Fractographic study of G17CrMo5-5 cast steel fracture in a transition brittle-ductile region. XLIII School of Materials Engineering, ed. by J. Pacyna, AGH, Krakow-Rytro, 27-30.09.2015, 65-68 (in Polish).
[18] C. Berdin, Damage evolution laws and fracture criteria. In Local Approach to Fracture, ed. by J. Besson, Paris, 147-174 (2004).
[19] A. Neimitz, I. Dzioba, The influence of the out-of- and in-plane constraint on fracture toughness of high strength steel in the ductile to brittle transition temperature range, Engineering Fracture Mechanics 147(10), 431-448 (2015).
[20] J. R. Rice, D. M. Tracey, On the ductile enlargement of voids in triaxial stress fields, Journal of the Mechanics and Physics of Solids 17, 201-217 (1969).
[21] W. Guo, Elastoplastic three dimensional crack border field - I. Singular structure of the field, Engineering Fracture Mechanics 46, 93-104 (1993).
EN Financial support of the Polish MSHE contracts and and NCTA contract PBS1B5 13/2012 is gratefully acknowledged. Figure 2 made by Piotr Furmanczyk. Sincere thanks for sharing these photographs.
PL Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-5bb4df22-a162-4d8e-b08e-a8469ac79a2d
DOI 10.1515/amm-2016-0196