Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Designing of quasi one-dimensional acoustic filters using genetic algorithm

Treść / Zawartość
Warianty tytułu
Języki publikacji
In phononic quasi one-dimensional structures, there is a phenomenon of a phononic bandgap (PhBG), which means that waves of a given frequency do not propagate in the structure. The location and size of PhBG depend on the thickness of the layers, the type of materials used and their distribution in space. The theoretical study examined the transmission properties of quasi one-dimensional structures designed using a genetic algorithm (GA). The objective function minimized the transmission integral and integral of the absolute value of the transmission functions derivative (to eliminate high transmission peaks with a small half width) in a given frequency range. The paper shows the minimization of transmission in various frequency bands for a 40-layer structure. The distribution of multilayer structure transmission was obtained through the Transfer Matrix Method (TMM) algorithm. Structures surrounded by water were analyzed and built of layers of glass and epoxy resin.
Opis fizyczny
Bibliogr. 27 poz., wykr.
  • Institute of Mechanics and Fundamentals of Machinery Design, Czestochowa University of Technology, ul. Dąbrowskiego 73, 42-201 Częstochowa, Poland,
  • Institute of Mechanics and Fundamentals of Machinery Design, Czestochowa University of Technology, ul. Dąbrowskiego 73, 42-201 Częstochowa, Poland,
  • 1. L. M. Brekhovskikh, Waves in Layered Media, 2nd ed., Academic Press, New York, 1980.
  • 2. P. Yeh, Optical Waves in Layered Media, John Wiley & Sons, New York, 1988.
  • 3. J. Sapriel, B. Djafari-Rouhani, Vibrations in superlattices, Surf. Sci. Rep., 10 (1989) 189 – 275.
  • 4. E. H. El Boudouti, B. Djafari-Rouhani, A. Akjouj, L. Dobrzynski, Acoustic waves in solid and fluid layered materials, Surf. Sci. Rep., 64 (2009) 471 – 594.
  • 5. L. Dobrzynski et al., Phononics, Elsevier, 2017.
  • 6. S. Garus, M. Szota, Occurence of Characteristic Peaks in Phononic Multilayer Structures, Revista de Chimie, 69(3) (2018) 735 – 738.
  • 7. S. Garus, W. Sochacki, M. Bold, Comparison Of Phononic Structures With Piezoelectric 0.62Pb(Mg1/3Nb1/3)O3-0.38PbTiO3 Defect Layers, Engineering Mechanics 2018 (red.) Fischer Cyril, Naprstek Jiri, Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, Prague, (2018) 229 – 232.
  • 8. A. M. Badreddine, J. H. Sun, F. S. Lin, J. C. Hsu, Hybrid phononic crystal plates for lowering and widening acoustic band, Ultrasonics, 54(8) 2159 – 64.
  • 9. S. Garus, M. Szota, Band GAP Frequency Response in Regular Phononic Crystals, Revista de Chimie, 69(12) (2018) 3372 – 3375.
  • 10. L. Han, Y. Zhang et al., A modified transfer matrix method for the study of the bending vibration band structure in phononic crystal Euler beams, Physica B: Condensed Matter, 407 (2012) 4579 – 4583.
  • 11. S. Garus, M. Bold, W. Sochacki, Transmission in the Phononic Octagonal Lattice Made of an Amorphous Zr55Cu30Ni5Al10 Alloy, Acta Phys. Pol. A, 135(2) (2019) 139 – 142.
  • 12. S. Garus, W. Sochacki, M. Bold, Transmission Properties of Two-Dimensional Chirped Phononic Crystal, Acta Phys. Pol. A, 135(2) (2019) 153 – 156.
  • 13. M. N. Armenise, C. E. Campanella, C. Ciminelli, F. Dell’Olio, V. M. N. Passaro, Phononic and photonic band gap structures: modelling and applications, Physics Procedia, 3(1) (2010) 357 – 364.
  • 14. S. Garus, W. Sochacki, One Dimensional Phononic FDTD Algorithm and Transfer Matrix Method Implementation for Severin Aperiodic Multilayer, Journal of Applied Mathematics and Computational Mechanics, 16(4) (2017) 17 – 27.
  • 15. T. Miyashita, Sonic crystals and sonic wave-guides, Meas. Sci. Technol., (2005) 16, R47.
  • 16. S. Alagoz, O. A. Kaya, B. B. Alagoz, Frequency controlled wave focusing by a sonic crystal lens, Applied Acoustics, 70 (2009) 1400 – 1405.
  • 17. M. M. Sigalas, E. N. Economou, Elastic and acoustic wave band structure, Journal of Sound and Vibration, 158 (1992) 377 – 382.
  • 18. C. Y. Qiu, Z. Y. Liu, Z. M. Jun, J. Shi, Mode-selecting acoustic filter by using resonant tunneling of two-dimensional double phononic crystals, Appl. Phys. Lett. 87 (2005) 104101.
  • 19. A. Cicek, O. A. Kaya, M. Yilmaz, B. Ulug, Slow sound propagation in a sonic crystal linear waveguide, J. Appl. Phys., 111 (2012) 013522.
  • 20. M. D. Zhang, W. Zhong, X. D. Zhang, Defect-free localized modes and couple-dresonator acoustic waveguides constructed in two-dimensional phononic quasicrystals, J. Appl. Phys., 111 (2012) 104314.
  • 21. J. Sánchez-Dehesa, V. M. Garcia-Chocano, D. Torrent, F. Cervera, S. Cabrera, Noise control by sonic crystal barriers made of recycled materials, J. Acoust. Soc. Am., 129 (2011) 1173.
  • 22. T. T. Wu, L. C. Wu, Z. G. Huang., Frequency band-gap measurement of two-dimensional air/silicon phononic crystals using layered slanted finger interdigital transducers, J. Appl. Phys., 97 (2005) 094916.
  • 23. I. Kriegel, F. Scotognella, Three material and four material one-dimensional phononic crystals, Physica E 85 (2017) 34 – 37.
  • 24. S. Villa-Arango, R. Torres, P. A. Kyriacou, R. Lucklum, Fully-disposable multilayered phononic crystal liquid sensor with symmetry reduction and a resonant cavity, Measurement, 102 (2017) 20 – 25.
  • 25. G. A. Gazonas, D. S. Weile, R. Wildman, A. Mohan, Genetic algorithm optimization of phononic band gap structures, Int. J. Solids Struct., 43(18) (2006) 5851 – 5866.
  • 26. H. W. Dong, X. X. Su, Y. S. Wang, C. Zhang, Topological optimization of two-dimensional phononic crystals based on the finite element method and genetic algorithm, Struct. Multidiscip. Optim., 50(4) (2014) 593 – 604.
  • 27. S. Garus, W. Sochacki, High-performance quasi one-dimensional mirrors of mechanical waves built of periodic and aperiodic structures, J. App. Math. Comp. Mech., 17(4) (2018) 19 – 24.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.