PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Exfoliation based technology of large scale manufacturing molybdenum disulphide graphene-like nanoparticle mixtures

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Application of solid lubricant nanoparticles to achieve the ultra low friction is proved to be a promising way of tribology development. A new exfoliation based technology of MoS2 solid lubricant nanoparticles is developed and elaborated in this work. The mechanical exfoliation technology of manufacturing MoS2 graphene-like nanoparticles by carefully controlling exfoliation parameters is examined with rolling cleavage machine, and the first characterization of nanoparticle–microparticle mixture obtained by this technology is made. The results reveal the promising application potential of the method.
Rocznik
Strony
144--149
Opis fizyczny
Bibliogr. 22 poz., rys., wykr.
Twórcy
Bibliografia
  • [1] L. Rapoport, Yu. Bilik, Y. Feldman, M. Homyonfer, S.R. Cohen, R. Tenne, Hollow nanoparticles of WS2 as potential solid-state lubricants, Nature 387 (1997) 791.
  • [2] R. Tenne, L. Margulis, M. Genut, G. Hodes, Polyhedral and cylindrical structures of tungsten disulphide, Nature 360 (1992) 444.
  • [3] D.J. Srolovitz, S.A. Safran, M. Homyonfer, R. Tenne, Morphology of nested fullerenes, Physical Review Letters 74 (1995) 1779–1781.
  • [4] M. Chhowalla, G.A.J. Amaratunga, Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear, Nature 407 (2000) 164.
  • [5] T. Filleter, R. Bennewitz, Structural and frictional properties of graphene films on SiC(0001) studied by atomic force microscopy, Physical Review B 81 (2010) 155412.
  • [6] D. Yang, R.F. Frindt, Li-intercalation and exfoliation of WS2, Journal of Physics and Chemistry of Solids 57 (1996) 1113–1116.
  • [7] H.S.S.R. Matte, A. Gomathi, A.K. Manna, D.J. Late, R. Datta, S.K. Pati, C.N.R. Rao, MoS2 and WS2 analogues of graphene, Angewandte Chemie International Edition 49 (2010) 4059–4062.
  • [8] C.N.R. Rao, A. Nag, Inorganic analogues of graphene, European Journal of Inorganic Chemistry (2010) 4244–4250.
  • [9] S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nquyen, R.S. Ruoff, Graphene-based composite materials, Nature 442 (7100) (2006) 282–286.
  • [10] A. Danelska, M. Szafran, Surface properties of nanoceramic powders, Archives of Metallurgy and Materials 56/4 (2011) 1077–1081.
  • [11] D. Michalik, M. Sopicka-Lizer, J. Plewa, T. Pawlik, Application of mechanochemical processing to synthesis of YAG: Cegarnet powder, Archives of Metallurgy and Materials 56/4 (2011) 1257–1264.
  • [12] S. Park, R.S. Ruoff, Chemical methods for the production of graphenes, Nature Nanotechnology 4 (2009) 217–224.
  • [13] Y.W. Zhenhua Ni, T. Yu, Z. Shen, Raman spectroscopy and imaging of graphene, Nano Research 1 (4) (2008) 273–291.
  • [14] M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: a review of graphene, Chemical Review 110 (1) (2009) 132–145.
  • [15] J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, Nature 446 (2007) 60–63.
  • [16] M. Jin, H.K. Jeong, Synthesis and systematic characterization of functionalized graphene sheets generated by thermal exfoliation at low temperature, Journal of Physics D: Applied Physics (UK) 43 (27) (2010) 275402.
  • [17] N.W. Pu, Y. Sung, Y.M. Liu, M.D. Ger: Production of Few-Layer Graphene by Supercritical CO2 Exfoliation of Graphite 63 (23) 2009 3.
  • [18] K.S. Novoselov, A.K. Geim, S.V. Morozov, Y. Jiang, S.V. Dubonos, I.V. Grigirieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (5696) (2004) 666–669.
  • [19] B. Jayasena, S. Subbiah, A novel mechanical cleavage method for synthesizing few-layer graphenes, Nanoscale Research Letters 6 (2011) 95.
  • [20] L.H. Li, Y. Chen, G. Behan, H.Z. Zhang, M. Petravic, M. Glushenkov, Large-scale mechanical peeling of boron nitride nanosheets by low-energy ball milling, Journal of Materials Chemistry 21 (2011) 11862–11866.
  • [21] M.A. Guler, S. Adibnazari, Y. Alinia, Tractive rolling contact mechanics of graded coatings, International Journal of Solids and Structures 49 (2012) 929–945.
  • [22] I. Kaplan-Ashiri, S.R. Cohen, N. Apter, Y. Wang, G. Seifert, H.D. Wagner, R. Tenne, Microscopic investigation of shear in multiwalled nanotube deformation, Journal of Physical Chemistry C 111 (2007) 8432–8436.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-58b47d08-efa3-4801-983c-3cf432efeaee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.