PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of silicates and phosphates anions on the formation of ceramic coatings on magnesium

Treść / Zawartość
Języki publikacji
EN
Abstrakty
EN
Magnesium and its alloys are promising materials for temporary biomedical implants due to their properties that resemble bone tissue; however, low corrosion resistance hinders their clinical application. Surface engineering, particularly through oxide ceramic layers, offers a viable solution to enhance wear and corrosion resistance, thereby improving biocompatibility. Plasma electrolytic oxidation (PEO) was applied to modify pure magnesium samples using sodium silicate electrolytes with different types and concentrations of phosphates. Multiple characterization techniques were used for surface analyses, including SEM, EDS, contact angle measurements, and profilometry. The results delineate the influence of electrolyte composition and applied voltage on coating thickness, pore size, and elemental incorporation. The PEO coatings exhibited porous structures with diverse pore sizes, influenced by the electrolyte composition and voltage. Morphological analysis revealed a scaffold-like surface structure with spherical and irregularly shaped pores. Elemental analysis confirmed the uniform incorporation of Si and P into the coatings. Anionic interaction played a significant role in forming the oxide layer, which is crucial for potential biomedical application. The study highlights the varied thickness levels and quality of PEO coatings, influenced by electrolyte composition and applied voltage. Coatings from a C4 electrolyte showed higher P and Si contents and the C4 electrolyte at 250 V demonstrated favourable characteristics, positioning them as promising candidates for biomedical applications on biodegradable magnesium alloys.
Rocznik
Strony
24--29
Opis fizyczny
Bibliogr. 24 poz., tab., wykr., zdj.
Twórcy
  • Silesian University of Technology, Faculty of Chemistry, 9 ks. Marcina Strzody Str., 44-100 Gliwice, Poland
  • Sumy State University, Biomedical Research Centre, 116 Kharkivska Str., 40007 Sumy, Ukraine
  • Silesian University of Technology, Faculty of Chemistry, 9 ks. Marcina Strzody Str., 44-100 Gliwice, Poland
  • Sumy State University, Biomedical Research Centre, 116 Kharkivska Str., 40007 Sumy, Ukraine
  • University of Latvia, Institute of Atomic Physics and Spectroscopy, 3 Jelgavas Str., LV-1004 Riga, Latvia
  • Silesian University of Technology, Faculty of Chemistry, 9 ks. Marcina Strzody Str., 44-100 Gliwice, Poland
Bibliografia
  • [1] Z. Lin, T. Wang, X. Yu, X. Sun, H. Yang: Functionalization treatment of micro-arc oxidation coatings on magnesium alloys: a review. J. Alloys Compd. 879 (2021), doi: 10.1016/j.jallcom.2021.160453.
  • [2] A. Mathew Abraham, V. Subramani: Effect of Magnesium as Biomaterial in Biodegrdation. Mater. Today Proc. (2023), doi: 10.1016/j.matpr.2023.05.424.
  • [3] M. Echeverry-Rendón, L.F. Berrio, S.M. Robledo, J.A. Calderón, J.G. Castaño, F. Echeverría: Corrosion Resistance and Biological Properties of Pure Magnesium Modified by PEO in Alkaline Phosphate Solutions. Corros. Mater. Degrad. 4(2) (2023) 196–211, doi: 10.3390/cmd4020012.
  • [4] N.Y. Imbirovich, M.D. Klapkiv, V.M. Posuvailo, O.Y. Povstyanoi: Properties of ceramic oxide coatings on magnesium and titanium alloys synthesized in electrolytic plasma. Powder Metall. Met. Ceram. 54(1-2) (2015) 47–52, doi: 10.1007/s11106-015-9678-7.
  • [5] A. Mahapatro: Bio-functional nano-coatings on metallic biomaterials. Mater. Sci. Eng. C 55 (2015) 227–251, doi: 10.1016/j.msec.2015.05.018.
  • [6] J.R. Smith, D.A. Lamprou, C. Larson, S.J. Upson: Biomedical applications of polymer and ceramic coatings: a review of recent- developments. Trans. Inst. Met. Finish. 100 (1) (2022) 25–35, doi: 10.1080/00202967.2021.2004744.
  • [7] M. Al-Amin, A.M. Abdul Rani, A.A. Abdu Aliyu, M.G. Bryant, M. Danish, A. Ahmad: Bio-ceramic coatings adhesion and roughness of biomaterials through PM-EDM: a comprehensive review. Mater. Manuf. Process. 35(11) (2020) 1157–1180, doi: 10.1080/10426914.2020.1772483.
  • [8] X. Guo, Y. Hu, K. Yuan, Y. Qiao: Review of the Effect of Surface Coating Modification on Magnesium Alloy Biocompatibility. Materials (Basel). 15(9) (2022), doi: 10.3390/ma15093291.
  • [9] G. Barati Darband, M. Aliofkhazraei, P. Hamghalam, N. Valizade: Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications. J. Magnes. Alloy. 5(1) (2017) 74–132, doi: 10.1016/j.jma.2017.02.004.
  • [10] M. Kaseem, S. Fatimah, N. Nashrah, Y.G. Ko: Recent progress in surface modification of metals coated by plasma electrolytic oxidation: Principle, structure, and performance. Prog. Mater. Sci. 117 (2021), doi: 10.1016/j.pmatsci.2020.100735.
  • [11] R. Arrabal, E. Matykina, F. Viejo, P. Skeldon, G.E. Thompson: Corrosion resistance of WE43 and AZ91D magnesium alloys with phosphate PEO coatings. Corros. Sci., 50(6) (2008) 1744–1752, doi: 10.1016/j.corsci.2008.03.002.
  • [12] A. Ghanbari, A. Bordbar Khiabani, A. Zamanian, B. Yarmand, M. Mozafari: The competitive mechanism of plasma electrolyte oxidation for the formation of magnesium oxide bioceramic coatings. Mater. Today Proc. 5(7) (2018) 15677–15685, doi: 10.1016/j.matpr.2018.04.178.
  • [13] Y. Husak et al.: Bioactivity performance of pure mg after plasma electrolytic oxidation in silicate-based solutions. Molecules 26(7) (2021), doi: 10.3390/molecules26072094.
  • [14] C.T. Rueden et al.: ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18(1) (2017), doi: 10.1186/s12859-017-1934-z.
  • [15] Z. Li, Y. Yuan, X. Jing: Effect of current density on the structure, composition and corrosion resistance of plasma electrolytic oxidation coatings on Mg-Li alloy. J. Alloys Compd. 541 (2012) 380–391, doi: 10.1016/j.jallcom.2012.06.139.
  • [16] M. Rahmati, K. Raeissi, M.R. Toroghinejad, A. Hakimizad, M. Santamaria: Effect of pulse current mode on microstructure, composition and corrosion performance of the coatings produced by plasma electrolytic oxidation on AZ31 Mg alloy. Coatings 9(10) (2019), doi: 10.3390/coatings9100688.
  • [17] P.B. Srinivasan, J. Liang, C. Blawert, M. Störmer, W. Dietzel: Characterization of calcium containing plasma electrolytic oxidation coatings on AM50 magnesium alloy. Appl. Surf. Sci. 256(12) (2010) 4017–4022, doi: 10.1016/j.apsusc.2010.01.069.
  • [18] A. Toulabifard, M. Rahmati, K. Raeissi, A. Hakimizad, M. Santamaria: The effect of electrolytic solution composition on the structure, corrosion, and wear resistance of peo coatings on az31 magnesium alloy. Coatings 10(10) (2020) 1–19, doi: 10.3390/coatings10100937.
  • [19] A. Heydarian, M. Atapour, A. Hakimizad, K. Raeissi: The effects of anodic amplitude and waveform of applied voltage on characterization and corrosion performance of the coatings grown by plasma electrolytic oxidation on AZ91 Mg alloy from an aluminate bath. Surf. Coatings Technol. 383 (2020), doi: 10.1016/j.surfcoat.2019.125235.
  • [20] F. Salahshouri, E. Saebnoori, S. Borghei, M. MossahebiMohammadi, H.R. Bakhsheshi-Rad, F. Berto: Plasma Electrolytic Oxidation (PEO) Coating on γ-TiAl Alloy: Investigation of Bioactivity and Corrosion Behavior in Simulated Body Fluid. Metals (Basel). 12(11) (2022), doi: 10.3390/met12111866.
  • [21] N. Mehri Ghahfarokhi, B. Shayegh Broujeny, A. Hakimizad, A. Doostmohammadi: Plasma electrolytic oxidation (PEO) coating to enhance in vitro corrosion resistance of AZ91 magnesium alloy coated with polydimethylsiloxane (PDMS). Appl. Phys. A Mater. Sci. Process. 128(2) (2022), doi: 10.1007/s00339-021-05239-5.
  • [22] M. Štrbák et al.: Effect of Plasma Electrolytic Oxidation on the Short-Term Corrosion Behaviour of AZ91 Magnesium Alloy in Aggressive Chloride Environment. Coatings 12(5) (2022), doi: 10.3390/coatings12050566.
  • [23] H. Sampatirao, S. Radhakrishnapillai, S. Dondapati, E. Parfenov, R. Nagumothu: Developments in plasma electrolytic oxidation (PEO) coatings for biodegradable magnesium alloys. Mater. Today Proc. 46 (2021) 1407–1415, doi: 10.1016/j.matpr.2021.02.650.
  • [24] M. Hashemzadeh, K. Raeissi, F. Ashrafizadeh, A. Hakimizad, M. Santamaria, T. Lampke: Silicate and Hydroxide Concentration Influencing the Properties of Composite Al2O3-TiO2 PEO Coatings on AA7075 Alloy. Coatings 12 (2022) 33, https://doi.org/10.3390/coatings12010033.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Identyfikator YADDA
bwmeta1.element.baztech-58a4eca0-3c08-4a9e-9b63-d9cdc571c6eb