PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Glycerol-assisted solution combustion synthesis of improved LiMn2O4

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Spinel LiMn2O4 has been synthesized by a glycerol-assisted combustion synthesis method. The phase composition and morphologies of the compound were ascertained by X-ray diffraction (XRD) and scanning electron microscope (SEM). The electrochemical characterization was performed by using CR2032 coin-type cell. XRD analysis indicates that single phase spinel LiMn2O4 with good crystallinity has been obtained as a result of 5 h treatment at 600 A degrees C. SEM investigation indicates that the average particle size of the sample is 200 nm. The initial discharge specific capacity of the LiMn2O4 is 123 mAh/g at a current density of 30 mA/g. When the current density increased to 300 mA/g, the LiMn2O4 offered a discharge specific capacity of 86 mAh/g. Compared with the LiMn2O4 prepared by a conventional solution combustion synthesis method at the same temperature, the prepared LiMn2O4 possesses higher purity, better crystallinity and more uniformly dispersed particles. Moreover, the initial discharge specific capacity, rate capability and cycling performance of the prepared LiMn2O4 are significantly improved.
Rocznik
Strony
386--390
Opis fizyczny
Bibliogr. 20 poz., rys., wykr.
Twórcy
autor
autor
autor
autor
autor
Bibliografia
  • [1] LIU W., KOWAL K., FARRINGTON G.C., J Electrochem Soc., 145 (1998), 459.
  • [2] HUANG H., VINCENT C.A., BRUCE P.G., J. Electrochem. Soc., 146 (1999), 481.
  • [3] AMATUCCI G.G., PEREIRA N., ZHENG T., TARASCON J.M., J. Electrochem. Soc., 148 (2001), A 171.
  • [4] HON Y.M., LIN S.P., FUNG K.Z., HON M.H., J. Eur. Ceram. Soc., 22 (2002), 653.
  • [5] WU H.M., TU J.P., YUAN Y.F., LI Y., ZHAO X.B., CAO G.S., Mater. Chem. Phys., 93 (2005), 461.
  • [6] SUN Y., WANG Z., CHEN L., HUANG X., J. Electrochem. Soc., 150 (2003), A1294.
  • [7] HWANG B.G., SANTHANAM R., LIU D.G., J. Power Sources, 101 (2001), 86.
  • [8] ZHECHEVA E.N., GOROVA M.Y., STOYANAVA R.K., J. Mater. Chem., 9 (1999), 1559.
  • [9] LIU W., FARRINGTON G.C., CHAPUT F., DUNN B., J. Electrochem. Soc., 143 (1996), 879.
  • [10] CHITRA S., KALAYANI P., MOHAN T., J. Electrochem., 3 – 4 (1999), 433.
  • [11] LEE K.M., CHOI H.J., LEE J.G., J Mater. Sci. Lett., 20 (2001), 1309.
  • [12] YAGN W.S., ZHANG G., XIE J.Y., J. Power Sources, 80 – 82 (1999), 412.
  • [13] LU C.Z., FEY G.T.K., J Phys. Chem. Solids, 67 (2006), 756.
  • [14] LIU G.Y., GUO D.W., GUO J.M., Key Eng. Mater., 368 – 372 (2008), 293.
  • [15] LIU G.Y., GUO J.M., WANG B.S., Adv. Mater. Res., 143 – 144 (2011), 125.
  • [16] DEAN J.A. Lange’s Chemistry Handbook, McGraw- Hill Publisher, New York, 1999.
  • [17] ARIYOSHI K., IWATA E., KUNIYOSHI M. et al., Electrochem. Solid ST, 9 (2006), 337.
  • [18] FANG H., LI L.P., YANG Y., J. Power Sources, 184 (2008), 494.
  • [19] KALYANI P., KALAISELVI N., MUNIYANDI N., J. Power Sources, 111 (2002), 232.
  • [20] FERGUS J.W., J. Power Sources, 195 (2010), 939.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-57115ffe-3652-47de-9369-4ba14ef059da
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.