Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Języki publikacji
Abstrakty
One of the most important obstacles of widening of multiscale modelling is its high computational demand. It is caused by the fact, that each of numerous fine scale models has comparable computational requirements to a coarse scale one. There are several ways of decreasing of computational time of multiscale models. Adaptation of a structure of a model is one of the most promising. In this paper the Adaptive Multiscale Modelling Methodology is described, including Knowledge-Based adaptation of the multiscale model of precipitation kinetics during heat treatment. Core features of the methodology are introduced. The numerical model of heat treatment of an aluminium alloy based on the methodology and the dedicated framework is presented. Besides modelling of macroscopic heat transfer, models of precipitation kinetics based on thermodynamic calculations are included. To decrease computational requirements arising from coupling of the macroscale model and the thermodynamic models, metamodeling and similarity approaches are applied. Computations with several configuration of rules are described, as well as their results. Reliability and time consumption of computations are discussed. Future perspectives of combining of modelling and metamodeling in one, integrated model are discussed.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
64--78
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
autor
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
- Biyikli, E., To, A.C., 2016, Multiresolution molecular mechanics: Adaptive analysis, Comput. Methods Appl. Mech. Eng., 305, 682-702.
- Chopard, B., Borgdorff, J., Hoekstra, A.G., 2014, A framework for multi-scale modelling, Philos. Trans. A. Math. Phys. Eng. Sci,. 372.
- da Silveira, E.S.S., Lages, E.N., Ferreira, F.M.G., 2012,DOOLINES : an object-oriented framework for non-linear static and dynamic analyses of offshore lines., Eng. Comput. 28, 149-159.
- Delalondre, F., Smith, C., Shephard, M.S., 2010, Collaborative software infrastructure for adaptive multiple model simulation, Comput. Methods Appl. Mech. Eng., 199, 1352-1370.
- Ghedini, E., Hashibon, A., Friis, J., Goldbeck, G., Schmitz, G.,2018, EMMO the European Materials Modelling Ontology, Cambridge. Kozeschnik, E., 2012, Modeling solid-state precipitation, Momentum Press, New York.
- Kozeschnik, E., Svoboda, J., Fratzl, P., Fischer, F.D., Fratzl, P.,Kozeschnik, E., 2004, Modelling of kinetics in multicomponent multi-phase systems with spherical precipitates, Mater. Sci. Eng. A, 385, 166-174.
- Kusiak, J., Sztangret, Ł., Pietrzyk, M., 2015, Effective strategies of metamodelling of industrial metallurgical processes, Adv. Eng. Softw., 89, 90-97.
- Macioł, P., Bureau, R., Poletti, C., Sommitsch, C., Warczok, P., Kozeschnik, E., 2015, Agile multiscale modelling of the thermo-mechanical processing of an aluminium alloy,ESAFORM Conf on Material Forming, Graz, Key Eng. Mater., 651-653, 1319-1324.
- Macioł, P., Bureau, R., Sommitsch, C., 2014, An object-oriented analysis of complex numerical models, Key Eng. Mater.,611-612, 1356-1363.
- Macioł, P., Gotfryd, L., Macioł, A., 2012a, Knowledge based system for runtime controlling of multiscale model of ionexchange solvent extraction, ICNAAM, Int. Conf. on Numerical Analysis and Applied Mathematics, Kos, AIP Conf. Proc., 125-128.
- Macioł, P., Jedrusik, S., Macioł, A., Jędrusik, S., Macioł, A., 2012b, The concept of a rule-based expert system application in multiscale modelling. Proc.14th Int. Conf. Metal Forming, Wiley-VCH Verlag GmbH & Co., Kraków, 1327-1330.
- Macioł, P., Krumphals, A., Jędrusik, S., Macioł, A., Sommitsch, C., 2013, Rule-based expert system application to optimizing of multiscale model of hot forging and heat treatment of Ti-6Al-4V, Proc. V Int. Conf. on Coupled Problems, eds, Idlesohn, S., Papadrakakis, E., Schrefler, B., Ibiza, 1237-1248.
- Macioł, P., Macioł, A., Rauch, Ł., 2017a, Ontology dedicated to knowledge-driven optimization for ICME approach, Proc.4th World Congr. Integr. Comput. Mater. Eng. ICME 2017, 113-121.
- Macioł, P., Michalik, K., 2016, Parallelization of fine-scale computation in agile multiscale modelling methodology, 19th. ESAFORM Conference on Material Forming, Nantes, AIP Conf. Proc., e-book.
- Macioł, P., Michalik, K., 2018, Application of metaprogramming and generic programming in multiscale modelling,Comput. Sci. Eng., 20(6), 81-94.
- Macioł, P., Regulski, K., 2016, Development of semantic description for multiscale models of thermo-mechanical treatment of metal alloys, JOM, J. Miner. Met. Mater. ,Soc., 68(8), 2082-2088.
- Macioł, P., Szeliga, D., Sztangret, Ł., 2017b, Substituting of a thermodynamic simulation with a metamodel in the scope of multiscale modeling, Materials Science Forum, Proc. Of THERMEC 2016, Graz, 1207-1212.
- Macioł, P., Szeliga, D., Sztangret, Ł., 2018, Methodology for metamodelling of microstructure evolution: precipitation kinetic case study, Int. J. Mater. Form., 11, 867-878.
- Panchal, J.H., Kalidindi, S.R., McDowell, D.L., 2013, Key computational modeling issues in Integrated Computational Materials Engineering, Comput. Des., 45, 4-25.
- Schmitz, G.J., 2015, ICME: Bridging interfaces, JOM, J. Miner. Met. Mater. Soc., 68(1), 25-26.
- Shephard, M.S., Smith, C., Kolb, J.E., 2013, Bringing HPC to engineering innovation, Comput. Sci. Eng., 15(1), 16-25.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Identyfikator YADDA
bwmeta1.element.baztech-569cd0b0-6bce-4c92-a6ad-a8dbc8d975b7