Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-54b5a2a9-a490-4731-9983-ffda6114b61e

Czasopismo

Journal of Power of Technologies

Tytuł artykułu

A survey on high-frequency inverter and their power control techniques for induction heating applications

Autorzy Kumar, A.  Sadhu, M.  Das, N.  Sadhu, P. K.  Roy, D.  Ganguly, A. 
Treść / Zawartość http://www.papers.itc.pw.edu.pl
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Intensive use of induction heating (IH) technology can be seen in many areas such as industrial, domestic and medical applications. The evolution of high-frequency switches has facilitated the design of high-frequency inverters, the key element of induction heating technology. Controling output power in a high-frequency inverter for induction heating application is complex. However, the importance of IH technology is not widespread. Induction heating technology requires accurate output power and current control with appropriate dynamics. Several power control techniques have been discussed inrelation to designing high-frequency inverters for IH applications. This paper makes a comprehensive review of the various power control techniques regarding high-frequency inverters for modern IH applications (domestic & industrial).
Słowa kluczowe
PL ogrzewanie indukcyjne   falownik wysokiej częstotliwości   falownik rezonansowy   PWM   AVC   APWM  
EN induction heating   IH   high frequency inverter   resonant inverter   PWM   AVC   APWM introduction  
Wydawca Institute of Heat Engineering, Warsaw University of Technology
Czasopismo Journal of Power of Technologies
Rocznik 2017
Tom Vol. 97, nr 3
Strony 201--213
Opis fizyczny Bibliogr. 89 poz., rys.
Twórcy
autor Kumar, A.
autor Sadhu, M.
  • Department of Management Studies, Indian Institute of Technology (ISM), Dhanbad, India
autor Das, N.
  • Department of Management Studies, Indian Institute of Technology (ISM), Dhanbad, India
autor Sadhu, P. K.
  • Department of Electrical Engineering, Indian Institute of Technology (ISM), Dhanbad, India
autor Roy, D.
  • Department of Electrical Engineering, Techno India, Batanagar, West Bengal, India
autor Ganguly, A.
  • Department of Electrical Engineering, Techno India, Batanagar, West Bengal, India
Bibliografia
[1] A. Arteconi, C. Brandoni, F. Polonara, Distributed generation and trigeneration: Energy saving opportunities in italian supermarket sector, Applied Thermal Engineering 29 (8) (2009) 1735–1743.
[2] P. R. Stauffer, T. C. Cetas, R. C. Jones, Magnetic induction heating of ferromagnetic implants for inducing localized hyperthermia in deep-seated tumors, IEEE Transactions on Biomedical Engineering (2) (1984) 235–251.
[3] W. Moreland, The induction range: Its performance and its development problems, IEEE Transactions on Industry Applications (1) (1973) 81–85.
[4] A. Chakraborty, D. Roy, P. K. Sadhu, A. Ganguly, A. Banerjee, (0549) an interference of high frequency series resonant inverter in domestic induction heater estimation in emission control using fem, Journal of Power Technologies.
[5] D. Roy, A. Naskar, P. K. Sadhu, A mathematical analysis of two dimensional steady state heat conduction in the coil of an induction heater using finite element method, J. Power Technol.
[6] A. MÜHLBAUER, History of induction heating and melting. essen: Vulkan, c2008, x, 202 p, Tech. rep., ISBN 38-027-2946-3.
[7] O. Lucía, P. Maussion, E. J. Dede, J. M. Burdío, Induction heating technology and its applications: past developments, current technology, and future challenges, IEEE Transactions on Industrial Electronics 61 (5) (2014) 2509–2520.
[8] F. P. Dawson, P. Jain, A comparison of load commutated inverter systems for induction heating and melting applications, IEEE Transactions on Power Electronics 6 (3) (1991) 430–441.
[9] H.W. Koertzen, J. D. VanWyk, J. A. Ferreira, Design of the half-bridge, series resonant converter for induction cooking, in: Power Electronics Specialists Conference, 1995. PESC’95 Record., 26th Annual IEEE, Vol. 2, IEEE, 1995, pp. 729–735.
[10] M. Kamli, S. Yamamoto, M. Abe, A 50-150 khz half-bridge inverter for induction heating applications, IEEE Transactions on Industrial Electronics 43 (1) (1996) 163–172.
[11] Y.-S. Kwon, S.-B. Yoo, D.-S. Hyun, Half-bridge series resonant inverter for induction heating applications with load-adaptive pfm control strategy, in: Applied Power Electronics Conference and Exposition, 1999. APEC’99. Fourteenth Annual, Vol. 1, IEEE, 1999, pp. 575–581.
[12] H. Koertzen, J. Ferreria, J. Van Wyk, A comparative study of single switch induction heating converters using novel component effectivity concepts, in: Power Electronics Specialists Conference, 1992. PESC’92 Record., 23rd Annual IEEE, IEEE, 1992, pp. 298–305.
[13] J. M. Burdio, L. A. Barragan, F. Monterde, D. Navarro, J. Acero, Asymmetrical voltage-cancellation control for full-bridge series resonant inverters, IEEE Transactions on Power Electronics 19 (2) (2004) 461–469.
[14] J. Davies, P. Simpson, Induction heating handbook, McGraw-Hill Companies, 1979.
[15] H. Sarnago, Ó. Lucía, M. Pérez-Tarragona, J. M. Burdío, Dual-output boost resonant full-bridge topology and its modulation strategies for high-performance induction heating applications, IEEE Transactions on Industrial Electronics 63 (6) (2016) 3554–3561.
[16] H. Sarnago, O. Lucia, A. Mediano, J. M. Burdio, Direct ac–ac resonant boost converter for efficient domestic induction heating applications, IEEE Transactions on Power Electronics 29 (3) (2014) 1128–1139.
[17] P. P. Roy, S. Doradla, S. Deb, Analysis of the series resonant converter using a frequency domain model, in: Power Electronics Specialists Conference, 1991. PESC’91 Record., 22nd Annual IEEE, IEEE, 1991, pp. 482–489.
[18] A. Bhat, Fixed frequency pwm series-parallel resonant converter, in: Industry Applications Society Annual Meeting, 1989., Conference Record of the 1989 IEEE, IEEE, 1989, pp. 1115–1121.
[19] L. Grajales, J. Sabate, K. Wang, W. Tabisz, F. Lee, Design of a 10 kw, 500 khz phase-shift controlled series-resonant inverter for induction heating, in: Industry Applications Society Annual Meeting, 1993., Conference Record of the 1993 IEEE, IEEE, 1993, pp. 843–849.
[20] J. Milewski, W. Bujalski, M. Wolowicz, K. Futyma, J. Kucowski, Off design operation of an 900 mw-class power plant with utilization of low temperature heat of flue gases, Journal of Power Technologies 95 (3) (2015) 221.
[21] M. Wolowicz, J. Milewski, K. Badyda, Feedwater repowering of 800 mw supercritical steam power plant, Journal of Power Technologies 92 (2) (2012) 127.
[22] M. Hediehloo, M. Akhbari, New approach in design of planar coil of induction cooker based on skin and proximity effects analysis, in: Industrial Technology, 2009. ICIT 2009. IEEE International Conference on, IEEE, 2009, pp. 1–6.
[23] ’Induction Heating System Topology Review’, http://www.induksiyonx.com/FileUpload/bs736485/File/an-9012.pdf.
[24] O. Fernandez, J. Delgado, F. Martinez, J. Correa, M. Heras, Design and implementation of a 120a resonant inverter for induction furnace, in: Power, Electronics and Computing (ROPEC), 2013 IEEE International Autumn Meeting on, IEEE, 2013, pp. 1–6.
[25] A. Shenkman, B. Axelrod, Y. Berkovich, Single-switch ac–ac converter with high power factor and soft commutation for induction heating applications, IEE Proceedings-Electric Power Applications 148 (6) (2001) 469–474.
[26] A. Shenkman, B. Axelrod, Y. Berkovich, Improved modification of the single-switch ac-ac converter for induction heating applications, IEE Proceedings-Electric Power Applications 151 (1) (2004) 1–4.
[27] N. Yongyuth, P. Viriya, K. Matsuse, Analysis of a full-bridge inverter for induction heating using asymmetrical phase-shift control under zvs and non-zvs operation, in: Power Electronics and Drive Systems, 2007. PEDS’07. 7th International Conference on, IEEE, 2007, pp. 476–482.
[28] C.-M.Wang, H.-J. Chiu, D.-R. Chen, Novel zero-current-switching (zcs) pwm converters, IEE Proceedings-Electric Power Applications 152 (2) (2005) 407–415.
[29] N.-J. Park, D.-Y. Lee, D.-S. Hyun, A power-control scheme with constant switching frequency in class-d inverter for induction-heating jar application, IEEE Transactions on Industrial Electronics 54 (3) (2007) 1252–1260.
[30] F. Forest, S. Faucher, J.-Y. Gaspard, D. Montloup, J.-J. Huselstein, C. Joubert, Frequency-synchronized resonant converters for the supply of multiwinding coils in induction cooking appliances, IEEE Transactions on Industrial Electronics 54 (1) (2007) 441–452.
[31] P. Savary, M. Nakaoka, T. Maruhashi, A high-frequency resonant inverter using current-vector control scheme and its performance evaluations, IEEE Transactions on Industrial Electronics (2) (1987) 247–256.
[32] A. L. Shenkman, B. Axelrod, V. Chudnovsky, A new simplified model of the dynamics of the current-fed parallel resonant inverter, IEEE Transactions on Industrial Electronics 47 (2) (2000) 282–286.
[33] A. Shenkman, B. Axelrod, V. Chudnovsky, Assuring continuous input current using a smoothing reactor in a thyristor frequency converter for induction metal melting and heating applications, IEEE Transactions on Industrial Electronics 48 (6) (2001) 1290–1292.
[34] R. L. Steigerwald, A comparison of half-bridge resonant converter topologies, IEEE transactions on Power Electronics 3 (2) (1988) 174–182.
[35] V. Esteve, E. Sanchis-Kilders, J. Jordán, E. J. Dede, C. Cases, E. Maset, J. B. Ejea, A. Ferreres, Improving the efficiency of igbt seriesresonant inverters using pulse density modulation, IEEE transactions on industrial electronics 58 (3) (2011) 979–987.
[36] O. Lucia, J. M. Burdio, I. Millán, J. Acero, L. A. Barragán, Efficiencyoriented design of zvs half-bridge series resonant inverter with variable frequency duty cycle control, IEEE Transactions on Power Electronics 25 (7) (2010) 1671–1674.
[37] J. Espi, E. Dede, E. Navarro, E. Sanchis, A. Ferreres, Features and design of the voltage-fed l-lc resonant inverter for induction heating, in: Power Electronics Specialists Conference, 1999. PESC 99. 30th Annual IEEE, Vol. 2, IEEE, 1999, pp. 1126–1131.
[38] J. Espi, E. Dede, Design considerations for three element l-lc resonant inverters for induction heating, International journal of electronics 86 (10) (1999) 1205–1216.
[39] J. Espi, A. Navarro, J. Maicas, J. Ejea, S. Casans, Control circuit design of the l-lc resonant inverter for induction heating, in: Power Electronics Specialists Conference, 2000. PESC 00. 2000 IEEE 31st Annual, Vol. 3, IEEE, 2000, pp. 1430–1435.
[40] J. Espi, E. Dede, A. Ferreres, R. Garcia, Steady-state frequency analysis of the "llc" resonant inverter for induction heating, in: Power Electronics Congress, 1996. Technical Proceedings. CIEP’96., IEEE International, IEEE, 1996, pp. 22–28.
[41] J. M. Espi-Huerta, E. J. D. G. Santamaria, R. G. Gil, J. Castello-Moreno, Design of the l-lc resonant inverter for induction heating based on its equivalent sri, IEEE Transactions on Industrial Electronics 54 (6) (2007) 3178–3187.
[42] L. Szablowski, J. Milewski, Dynamic analysis of compressed air energy storage in the car, Journal of Power Technologies 91 (1) (2011) 23.
[43] J. Milewski, K. Badyda, L. Szablowski, Compressed air energy storage systems, Journal of Power Technologies 96 (4) (2016) 245.
[44] O. Lucia, J. M. Burdio, L. A. Barragan, J. Acero, I. Millán, Seriesresonant multiinverter for multiple induction heaters, IEEE Transactions on Power Electronics 25 (11) (2010) 2860–2868.
[45] J. M. Burdio, F. Monterde, J. R. Garcia, L. A. Barragan, A. Martinez, A two-output series-resonant inverter for induction-heating cooking appliances, IEEE Transactions on Power Electronics 20 (4) (2005) 815–822.
[46] M. Pérez-Tarragona, H. Sarnago, Ó. Lucia, J. M. Burdío, Series resonant multi-inverter prototype for domestic induction heating, in: Industrial Electronics Society, IECON 2015-41st Annual Conference of the IEEE, IEEE, 2015, pp. 005444–005449.
[47] Y.-C. Jung, Dual half bridge series resonant inverter for induction heating appliance with two loads, Electronics letters 35 (16) (1999) 1345–1346.
[48] F. Forest, E. Laboure, F. Costa, J. Y. Gaspard, Principle of a multiload/single converter system for low power induction heating, IEEE Transactions on Power Electronics 15 (2) (2000) 223–230.
[49] N. Nguyen-Quang, D. Stone, C. Bingham, M. Foster, Single phase matrix converter for radio frequency induction heating, in: Power Electronics, Electrical Drives, Automation and Motion, 2006. SPEEDAM 2006. International Symposium on, IEEE, 2006, pp. 614–618.
[50] H. Sugimura, S.-P. Mun, S.-K. Kwon, T. Mishima, M. Nakaoka, Highfrequency resonant matrix converter using one-chip reverse blocking igbt-based bidirectional switches for induction heating, in: Power Electronics Specialists Conference, 2008. PESC 2008. IEEE, IEEE, 2008, pp. 3960–3966.
[51] H. Sarnago, A. Mediano, O. Lucia, High efficiency ac–ac power electronic converter applied to domestic induction heating, IEEE Transactions on Power Electronics 27 (8) (2012) 3676–3684.
[52] J. Rodriguez, J.-S. Lai, F. Z. Peng, Multilevel inverters: a survey of topologies, controls, and applications, IEEE Transactions on industrial electronics 49 (4) (2002) 724–738.
[53] J.-S. Lai, F. Z. Peng, Multilevel converters-a new breed of power converters, IEEE Transactions on industry applications 32 (3) (1996) 509–517.
[54] G. P. Adam, S. J. Finney, A. M. Massoud, B. W. Williams, Capacitor balance issues of the diode-clamped multilevel inverter operated in a quasi two-state mode, IEEE Transactions on Industrial Electronics 55 (8) (2008) 3088–3099.
[55] L. Qingfeng, W. Huamin, L. Zhaoxia, Discuss on the application of multilevel inverter in high frequency induction heating power supply, in: TENCON 2006. 2006 IEEE Region 10 Conference, IEEE, 2006, pp. 1–4.
[56] J. I. Rodriguez, S. B. Leeb, A multilevel inverter topology for inductively coupled power transfer, IEEE Transactions on Power Electronics 21 (6) (2006) 1607–1617.
[57] B. Nagarajan, R. R. Sathi, Phase locked loop based pulse density modulation scheme for the power control of induction heating applications, Journal of Power Electronics 15 (1) (2015) 65–77.
[58] O. Lucia, C. Carretero, D. Palacios, D. Valeau, J. Burdío, Configurable snubber network for efficiency optimisation of resonant converters applied to multi-load induction heating, Electronics letters 47 (17) (2011) 989–991.
[59] N. A. Ahmed, M. Nakaoka, Boost-half-bridge edge resonant soft switching pwm high-frequency inverter for consumer induction heating appliances, IEE Proceedings-Electric Power Applications 153 (6) (2006) 932–938.
[60] H. Sarnago, O. Lucia, A. Mediano, J. M. Burdío, Class-d/de dual-modeoperation resonant converter for improved-efficiency domestic induction heating system, IEEE Transactions on Power Electronics 28 (3) (2013) 1274–1285.
[61] H. P. Ngoc, H. Fujita, K. Ozaki, N. Uchida, Phase angle control of high-frequency resonant currents in a multiple inverter system for zone-control induction heating, IEEE Transactions on power electronics 26 (11) (2011) 3357–3366.
[62] C. Carretero, O. Luc, J. Acero, J. Burd, et al., Phase-shift control of dual half-bridge inverter feeding coupled loads for induction heating purposes, Electronics Letters 47 (11) (2011) 670–671.
[63] M. K. Kazimierczuk, M. K. Jutty, Fixed-frequency phase-controlled fullbridge resonant converter with a series load, IEEE transactions on power electronics 10 (1) (1995) 9–18.
[64] H. Kifune, Y. Hatanaka, M. Nakaoka, Cost effective phase shifted pulse modulation soft switching high frequency inverter for induction heating applications, IEE Proceedings-Electric Power Applications 151 (1) (2004) 19-25.
[65] B.-Y. Chen, Y.-S. Lai, Switching control technique of phase-shiftcontrolled full-bridge converter to improve efficiency under light-load and standby conditions without additional auxiliary components, IEEE transactions on power electronics 25 (4) (2010) 1001–1012.
[66] P. Imbertson, N. Mohan, Asymmetrical duty cycle permits zero switching loss in pwm circuits with no conduction loss penalty, IEEE transactions on industry applications 29 (1) (1993) 121–125.
[67] P. Imbertson, N. Mohan, New pwm converter circuits combining zero switching loss with low conduction loss, in: Telecommunications Energy Conference, 1990. INTELEC’90., 12th International, IEEE, 1990, pp. 179–185.
[68] S. Yachiangkam, A. Sangswang, S. Naetiladdanon, C. Koompai, S. Chudjuarjeen, Resonant inverter with a variable-frequency asymmetrical voltage-cancellation control for low q-factor loads in induction cooking, in: Power Electronics and Applications (EPE 2011), Proceedings of the 2011-14th European Conference on, IEEE, 2011, pp. 1–10.
[69] S. Hosseini, A. Y. Goharrizi, E. Karimi, A multi-output series resonant inverter with asymmetrical voltage-cancellation control for inductionheating cooking appliances, in: Power Electronics and Motion Control Conference, 2006. IPEMC 2006. CES/IEEE 5th International, Vol. 3, IEEE, 2006, pp. 1–6.
[70] J. Jittakort, S. Chudjuarjeen, A. Sangswang, S. Naetiladdanon, C. Koompai, A dual output series resonant inverter with improved asymmetrical voltage-cancellation control for induction cooking appliance, in: IECON 2011-37th Annual Conference on IEEE Industrial Electronics Society, IEEE, 2011, pp. 2520–2525.
[71] L. A. Barragán, J. M. Burdío, J. I. Artigas, D. Navarro, J. Acero, D. Puyal, Efficiency optimization in zvs series resonant inverters with asymmetrical voltage-cancellation control, IEEE transactions on power electronics 20 (5) (2005) 1036–1044.
[72] N. A. Ahmed, High-frequency soft-switching ac conversion circuit with dual-mode pwm/pdm control strategy for high-power ih applications, IEEE transactions on industrial electronics 58 (4) (2011) 1440–1448.
[73] H. Fujita, H. Akagi, Control and performance of a pulse-densitymodulated series-resonant inverter for corona discharge processes, IEEE Transactions on Industry Applications 35 (3) (1999) 621–627.
[74] O. Lucia, J. M. Burdio, I. Millan, J. Acero, D. Puyal, Load-adaptive control algorithm of half-bridge series resonant inverter for domestic induction heating, IEEE Transactions on Industrial Electronics 56 (8) (2009) 3106–3116.
[75] S. Shah, A. K. Upadhyay, Analysis and design of a half-bridge seriesparallel resonant converter operating in discontinuous conduction mode, in: Applied Power Electronics Conference and Exposition, 1990. APEC’90, Conference Proceedings 1990., Fifth Annual, IEEE, 1990, pp. 165–174.
[76] V. Belaguli, A. K. Bhat, Series-parallel resonant converter operating in discontinuous current mode. analysis, design, simulation, and experimental results, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 47 (4) (2000) 433–442.
[77] I. Millan, D. Puyal, J. Burdio, C. Bemal, J. Acero, Improved performance of half-bridge series resonant inverter for induction heating with discontinuous mode control, in: Applied Power Electronics Conference, APEC 2007-Twenty Second Annual IEEE, IEEE, 2007, pp. 1293–1298.
[78] J. Tian, G. Berger, T. Reimann, M. Scherf, J. Petzoldt, A half-bridge series resonant inverter for induction cookers using a novel fpga-based control strategy, in: Power Electronics and Applications, 2005 European Conference on, IEEE, 2005, pp. 1–9.
[79] H. N. Pham, H. Fujita, K. Ozaki, N. Uchida, Dynamic analysis and control for resonant currents in a zone-control induction heating system, IEEE Transactions on Power Electronics 28 (3) (2013) 1297–1307.
[80] J. Egalon, S. Caux, P. Maussion, M. Souley, O. Pateau, Multiphase system for metal disc induction heating: Modeling and rms current control, IEEE Transactions on industry applications 48 (5) (2012) 1692–1699.
[81] M. Cano, A. Barrera, J. Estrada, A. Hernandez, T. Cordova, An induction heater device for studies of magnetic hyperthermia and specific absorption ratio measurements, Review of Scientific Instruments 82 (11) (2011) 114904.
[82] D. Paesa, C. Franco, S. Llorente, G. Lopez-Nicolas, C. Sagues, Adaptive simmering control for domestic induction cookers, IEEE Transactions on Industry Applications 47 (5) (2011) 2257–2267.
[83] N. K. Long, S. Caux, X. Kestelyn, O. Pateau, P. Maussion, Resonant control of multi-phase induction heating systems, in: IECON 2012-38th Annual Conference on IEEE Industrial Electronics Society, IEEE, 2012, pp. 3293–3298.
[84] A. Dominguez, L. A. Barragan, A. Otin, D. Navarro, D. Puyal, Inversebased power control in domestic induction-heating applications, IEEE transactions on industrial electronics 61 (5) (2014) 2612–2621.
[85] J. I. Artigas, I. Urriza, J. Acero, L. A. Barragan, D. Navarro, J. M. Burdio, Power measurement by output-current integration in series resonant inverters, IEEE Transactions on Industrial Electronics 56 (2) (2009) 559–567.
[86] D. Navarro, Ó. Lucı, L. A. Barragán, I. Urriza, Ó. Jiménez, et al., High-level synthesis for accelerating the fpga implementation of computationally demanding control algorithms for power converters, IEEE Transactions on Industrial Informatics 9 (3) (2013) 1371–1379.
[87] O. Lucia, L. A. Barragan, J. M. Burdio, O. Jimenez, D. Navarro, I. Urriza, A versatile power electronics test-bench architecture applied to domestic induction heating, IEEE Transactions on Industrial Electronics 58 (3) (2011) 998–1007.
[88] D. Navarro, Ó. Lucía, L. A. Barragan, J. I. Artigas, I. Urriza, O. Jimenez, Synchronous fpga-based high-resolution implementations of digital pulse-width modulators, IEEE transactions on power electronics 27 (5) (2012) 2515–2525.
[89] O. Jimenez, O. Lucia, I. Urriza, L. A. Barragan, P. Mattavelli, D. Boroyevich, An fpga-based gain-scheduled controller for resonant converters applied to induction cooktops, IEEE Transactions on Power Electronics 29 (4) (2014) 2143–2152.5.
Uwagi
PL Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-54b5a2a9-a490-4731-9983-ffda6114b61e
Identyfikatory