Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-541f51ff-4024-4ddd-9cb6-e6de27b9eb0a

Czasopismo

Acta of Bioengineering and Biomechanics

Tytuł artykułu

The comparison of density-elastic modulus equations for the distal ulna at multiple forearm positions : a finite element study

Autorzy Neuert, M. A. C.  Austman, R. L.  Dunning , C. E. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN The accuracy of an empirically derived density-modulus equation for bone depends upon the loading conditions and anatomic site of bone specimens used for experimentation. A recent study used FE modeling to compare the ability of three density-modulus relationships to predict strain during bending in neutral forearm rotation in the distal ulna; however, due to the inhomogeneous nature of these FE models, the performance of each equation is not necessarily consistent throughout forearm rotation. This issue is addressed in the present study, which compares the performance of these equations in pronation and supination. Strain gauge data were collected at six discreet locations of six ulna specimens loaded in bending at 40° of pronation and supination. Three FE models of each specimen were made, one for each density-modulus relation, and the strain output compared to the experimental data. The equation previously shown to be most accurate in predicting ulnar strain in neutral forearm rotation was also most accurate in pronation and supination. These results identify this one equation as the most appropriate for future FE analysis of the ulna (including adaptive remodeling, and further show that isotropic and inhomogeneous FE bone models may provide consistent results in different planes of bending.
Słowa kluczowe
PL analiza elementów skończonych   implant   biomechanika  
EN finite element analysis   density modulus relationship   biomechanics   ulna   implant   experimental validation  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Acta of Bioengineering and Biomechanics
Rocznik 2013
Tom Vol. 15, nr 3
Strony 37--43
Opis fizyczny Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
autor Neuert, M. A. C.
  • Mechanical and Materials Engineering, University of Western Ontario, London, Canada, mneuert@uwo.ca
autor Austman, R. L.
  • Mechanical and Materials Engineering, University of Western Ontario, London, Canada
autor Dunning , C. E.
  • Mechanical and Materials Engineering, University of Western Ontario, London, Canada
Bibliografia
[1] KERNER J., HUISKES R., van LENTHE G.H., WEINANS H., van RIETBERGEN B., ENGH C.A., AMIS A.A., Correlation between pre-operative periprosthetic bone density and postoperative bone loss in THA can be explained by strainadaptive remodelling, Journal of Biomechanics, 1999, Vol. 32, 695–703.
[2] SCHILEO E., TADDEI T., MALANDRINO A., CRISTOFOLINI L., VICECONTI M., Subject-specific finite element models can accurately predict strain levels in long bones, Journal of Biomechanics, 2007, Vol. 40, 2982–2989.
[3] TADDEI F., VICECONTI M., MANFRINI M., TONI A., Mechanical strength of a femoral reconstruction in paediatric oncology: A finite element study. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2003, Vol. 217, 111–119.
[4] GARCÍA J., DOBLARÉ M., CEGOÑINO J., Bone remodeling simulation: a tool for implant design, Computational Materials Science, 2002, Vol. 25, 100–114.
[5] HUISKES R., WEINANS H., DALSTRA M., Adaptive bone remodeling and biomechanical design considerations for noncemented total hip arthroplasty, Orthopedics, 1989, Vol. 12, 1255–1267.
[6] PÉREZ M.A., FORNELLS P., DOBLARÉ M., GARCÍA-AZNAR J.M., Comparative analysis of bone remodelling models with respect to computerised tomography-based finite element models of bone, Computer Methods in Biomechanics and Biomedical Engineering, 2010, Vol. 13, 71–80.
[7] WEINANS H., HUISKES R., GROOTENBOER H.J., Effects of material properties of femoral hip components on bone remodeling, Journal of Orthopaedic Research, 1992, Vol. 10, 845–853.
[8] WEINANS H., HUISKES R., van RIETBERGEN B., SUMNER D.R., TURNER T.M., GALANTE J.O., Adaptive bone remodeling around bonded noncemented total hip arthroplasty: A comparison between animal experiments and computer simulation, Journal of Orthopaedic Research, 1993, Vol. 1, 500–513.
[9] LEUNG A.S.O., GORDON L.M., SKRINSKAS T., SZWEDOWSKI T., WHYNE C.M., Effects of bone density alterations on strain patterns in the pelvis: Application of a finite element model, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2009, Vol. 223, 965–979.
[10] TADDEI F., CRISTOFOLINI L., MARTELLI S., GILL H.S., VICECONTI M., Subject-specific finite element models of long bones: An in vitro evaluation of the overall accuracy, Journal of Biomechanics, 2006, Vol. 39, 2457–2467.
[11] KALOUCHE I., CRÉPIN J., ABDELMOUMEN S., MITTON D., GUILLOT G., GAGEY O., Mechanical properties of glenoid cancellous bone, Clinical Biomechanics, 2010, Vol. 25, 292–298.
[12] MORGAN E.F., BAYRAKTAR H.H., KEAVENY T.M., Trabecular bone modulus-density relationships depend on anatomic site, Journal of Biomechanics, 2003, Vol. 36, 897–904.
[13] BEAUPRÉ G.S., ORR T.E., CARTER D.R., An approach for time-dependent bone modeling and remodeling – application: A preliminary remodeling simulation, Journal of Orthopaedic Research, 1990, Vol. 8, 662-670.
[14] DABIRRAHMANI D., HOGG M., KOHAN L., GILLIES M., Primary and long-term stability of a short-stem hip implant, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2010, Vol. 224, 1109–1119.
[15] SHARMA G.B., DEBSKI R.E., McMAHON P.J., ROBERTSON D.D., Adaptive glenoid bone remodeling simulation, Journal of Biomechanics, 2009, Vol. 42, 1460–1468.
[16] AUSTMAN R.L., MILNER J.S., HOLDSWORTH D.W., DUNNING C.E., Development of a customized density-modulus relationship for use in subject-specific finite element models of the ulna, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2009, Vol. 223, 787–794.
[17] AUSTMAN R.L., MILNER J.S., HOLDSWORTH D.W., DUNNING C.E., The effect of the density-modulus relationship selected to apply material properties in a finite element model of long bone, Journal of Biomechanics, 2008, Vol. 41, 3171–3176.
[18] BLAND J.M., ALTMAN D.G., Statistical methods for assessing agreement between two methods of clinical measurement, Lancet, 1986, Vol. 1, 307–310.
[19] CARTER D.R., HAYES W.C., The compressive behavior of bone as a two-phase porous structure, Journal of Bone and Joint Surgery - Series A, 1977, Vol. 59, 954–962.
[20] GORDON K.D., KEDGLEY A.E., FERREIRA L.M., KING G.J.W., JOHNSON J.A., Effect of simulated muscle activity on distal radioulnar joint loading in vitro, Journal of Orthopaedic Research 2006, Vol. 24, 1395–1404.
[21] DEMPSTER W.T., LIDDICOAT R.T., Compact bone as a nonisotropic material, The American Journal of Anatomy, 1952, Vol. 91, 331–362.
[22] GOULET R.W., GOLDSTEIN S.A., CIARELLI M.J., KUHN J.L., BROWN M.B., FELDKAMP L.A., The relationship between the structural and orthogonal compressive properties of trabecular bone, Journal of Biomechanics, 1994, Vol. 27, 375–389.
[23] MARTENS M., van AUDEKERCKE R., DELPORT P., The mechanical characteristics of cancellous bone at the upper femoral region, Journal of Biomechanics, 1983, Vol. 16, 971–983.
[24] BARKER D.S., NETHERWAY D.J., KRISHNAN J., HEARN T.C., Validation of a finite element model of the human metacarpal, Medical Engineering and Physics, 2005, Vol. 27, 103–113.
[25] YANG H., MA X., GUO T., Some factors that affect the comparison between isotropic and orthotropic inhomogeneous finite element material models of femur, Medical Engineering and Physics, 2010, Vol. 32, 553–560.
[26] BACA V., HORAK Z., MIKULENKA P., DZUPA V., Comparison of an inhomogeneous orthotropic and isotropic material models used for FE analyses, Medical Engineering and Physics, 2008, Vol. 30, 924–930.
[27] PENG L., BAI J., ZENG X., ZHOU Y., Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions, Medical Engineering and Physics, 2006, Vol. 28, 227–233.
[28] GUPTA S., NEW A.M.R., TAYLOR T., Bone remodelling inside a cemented resurfaced femoral head, Clinical Biomechanics, 2006, Vol. 21, 594–602.
[29] HUISKES R., WEINANS H., GROOTENBOER H.J., DALSTRA M., FUDALA B., SLOOFF T.J., Adaptive bone-remodeling theory applied to prosthetic-design analysis, Journal of Biomechanics, 1987, Vol. 20, 1135–1150.
[30] SHARMA G.B., DEBSKI R.E., MCMAHON P.J., ROBERTSON D.D., Effect of glenoid prosthesis design on glenoid bone remodeling: Adaptive finite element based simulation, Journal of Biomechanics, 2010, Vol. 43, 1653–1659.
[31] STÜLPNER M.A., REDDY B.D., STARKE G.R., SPIRAKIS A., A three-dimensional finite analysis of adaptive remodeling in the proximal femur, Journal of Biomechanics, 1997, Vol. 30, 1063–1066.
[32] TURNER A.W.L., GILLIES R.M., SEKEL R., MORRIS P., BRUCE W., WALSH W.R., Computational bone remodelling simulations and comparisons with DEXA results, Journal of Orthopaedic Research, 2005, Vol. 23, 705–712.
[33] BITSAKOS C., KERNER J., FISHER I., AMIS A.A., The effect of muscle loading on the simulation of bone remodelling in the proximal femur, Journal of Biomechanics, 2005, Vol. 38, 133–139.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-541f51ff-4024-4ddd-9cb6-e6de27b9eb0a
Identyfikatory