Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Studies of aerosol optical depth with the use of Microtops II sun photometers and MODIS detectors in coastal areas of the Baltic Sea

Warianty tytułu
Języki publikacji
In this paper we describe the results of a research campaign dedicated to the studies of aerosol optical properties in different regions of both the open Baltic Sea and its coastal areas. During the campaign we carried out simultaneous measurements of aerosol optical depth at 4 stations with the use of the hand-held Microtops II sun photometers. The studies were complemented with aerosol data provided by the MODIS. In order to obtain the full picture of aerosol situation over the study area, we added to our analyses the air mass back-trajectories at various altitudes as well as wind fields. Such complex information facilitated proper conclusions regarding aerosol optical depth and Ångström exponent for the four locations and discussion of the changes of aerosol properties with distance and with changes of meteorological factors. We also show that the Microtops II sun photometers are reliable instruments for field campaigns. They are easy to operate and provide good quality results.
Opis fizyczny
Bibliogr. 33 poz.
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Badarinath, K.V.S., S.K. Kharol, D.G. Kaskoutis, A.R. Sharma, V. Ramswamy, and H.D Kambezidis (2010), Long-range transport of dust aerosols over the Arabian Sea and Indian region – A case study using satellite data and ground-based measurements, Global Planet. Change 72, 3, 164-181, DOI: 10.1016/j.gloplacha.2010.02.003.
  • Blanchard, D.C., and L.D. Syzdek (1988), Film drop production as a function of bubble size, J. Geophys. Res. 93, C4, 3649-3654, DOI: 10.1029/JC093iC04p03649.
  • Bokoye, A.I., A. de la Cosiniere, and T. Cabot (1997), Angstrom turbidity parameters and aerosol optical thickness: A study over 500 solar beam spectra, J. Geophys. Res. 102, D18, 21905-21914, DOI: 10.1029/97JD01393.
  • Christensen, J.H. (1997), The Danish Eulerian hemispheric model – a three-dimensional air pollution model used for the Arctic, Atmos. Environ. 31, 24, 4169-4191, DOI: 10.1016/S1352-2310(97)00264-1.
  • Dubovik, O., B. Holben, T.F. Eck, A. Smirnov, Y.J. Kaufman, M.D. King, D. Tanré, and I. Slutsker (2002), Variability of absorption and optical properties of key aerosol types observed in worldwide locations, J. Atmos. Sci. 59, 3, 590-608, DOI: 10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2.
  • Fairall, C.W., K.L. Davidson, and G.E. Schacher (1983), An analysis of the surface production of sea-salt aerosols, Tellus 35B, 1, 31-39, DOI: 10.1111/j.1600-0889.1983.tb00005.x.
  • Fantoni, R., L. Fiorani, I.G. Okladnikov, and A. Palucci (2010), Local observations of primary production in the Ross Sea: results of a lidar-calibrated satellite algorithm, Optoelectron. Adv. Mater. – Rapid Commum. 4, 5, 759-763.
  • Fitzgerald, J.W. (1991), Marine aerosols: A review, Atmos. Environ. 25A, 3-4, 533-545, DOI: 10.1016/0960-1686(91)90050-H.
  • Gao, F., K. Bergant, A. Filipčič, B. Forte, D.-X. Hua, X.-Q. Song, S. Stanič, D. Veberič, and M. Zavrtanik (2011), Observations of the atmospheric boundary layer across the land-sea transition zone using a scanning Mie lidar, J. Quant. Spectrosc. Ra, 112, 2, 182-188, DOI: 10.1016/j.jqsrt.2010.04.001.
  • Giannakaki, E., D.S. Balis, V. Amiridis, and C. Zerefos (2010), Optical properties of different aerosol types: seven years of combined Raman-elastic backscatter lidar measurements in Thessaloniki, Greece, Atmos. Meas. Tech. 3, 3, 569-578, DOI: 10.5194/amt-3-569-2010.
  • Gong, S.L., L.A. Barrie, and J.-P. Blanchet (1997), Modelling sea-salt aerosols in the atmosphere: 1. Model development, J. Geophys. Res. 102, D3, 3805-3818, DOI: 10.1029/96JD02953.
  • Levy, R.C., L.A. Remer, D. Tanre, S. Mattoo, and Y.J. Kaufman (2009), Algorithm for remote sensing of tropospheric aerosol over dark targets from MODIS, Collections 005 and 051: Revision 2.
  • Markowicz, K.M., P.J Flatau, A.E. Kardas, J. Remiszewska, K. Stelmaszczyk, and L. Woeste (2008), Ceilometer retrieval of the boundary layer vertical aerosol extinction structure, J. Atmos. Oceanic Technol. 25, 6, 928-944, DOI: 10.1175/2007JTECHA1016.1.
  • Markowicz, K.M., T. Zieliński, S. Blindheim, M. Gausa, A.K. Jagodnicka, A.E. Kardas, W. Kumala, S.P. Malinowski, T. Petelski, M. Posyniak, and T. Stacewicz (2012), Study of vertical structure of aerosol optical properties with sun photometers and ceilometer during MACRON campaign in 2007, Acta Geophys. 60, 5, 1308-1337, DOI: 10.2478/s11600-011-0056-7.
  • Monahan, E.C., and G. Mac Niocall (eds.) (1986), Oceanic Whitecaps and their Role in Air-sea Exchange Processes, Oceanographic Sciences Library, Vol. 2, Kluwer Academic Publs., Dordrecht.
  • Morys, M., F.M. Mims III, S. Hagerup, S.E. Anderson, A. Baker, J. Kia, and T. Walkup (2001), Design, calibration, and performance of MICROTOPS II handheld ozone monitor and Sun photometer, J. Geophys. Res. 106, D13, 14573-14582, DOI: 10.1029/2001JD900103.
  • Petelski, T., and J. Piskozub (2006), Vertical coarse aerosol fluxes in the atmospheric surface layer over the North Polar Waters of the Atlantic, J. Geophys. Res. 111, C06039, DOI: 10.1029/2005JC003295.
  • Rajeev, K., K. Parameswaran, B.V. Thampi, M.K. Mishra, A.K.M. Nair, and S. Meenu (2010), Altitude distribution of aerosols over Southeast Arabian Sea coast during pre-monsoon season: Elevated layers, long-range transport and atmospheric radiative heating, Atmos. Environ. 44, 21-22, 2597-2604, DOI: 10.1016/j.atmosenv.2010.04.014.
  • Resch, F.J., S.J. Darrozes, and G.M. Afeti (1986), Marine liquid aerosol production from bursting of air bubbles, J. Geophys. Res. 91, C1, 1019-1029, DOI: 10.1029/JC091iC01p01019.
  • Smirnov, A., B.N. Holben, T.F. Eck, O. Dubovik, and I. Slutsker (2000), Cloudscreening and quality control algorithms for the AERONET database, Remote Sens. Environ. 73, 3, 337-349, DOI: 10.1016/S0034-4257(00)00109-7.
  • Smirnov, A., B.N. Holben, T.F. Eck, I. Slutsker, B. Chatenet, and R.T. Pinker (2002), Diurnal variability of aerosol optical depth observed at AERONET (Aerosol Robotic Network) sites, Geophys. Res. Lett. 29, 23, 2115, DOI: 10.1029/2002GL016305.
  • Smirnov, A., B.N. Holben, S.M. Sakerin, D.M. Kabanov, I. Slutsker, M. Chin, T.L. Diehl, L.A. Remer, R. Kahn, A. Ignatov, L. Liu, M. Mishchenko, T.F. Eck, T.L. Kuscera, D. Giles, and O.V. Kopelevich (2006), Ship-based aerosol optical depth measurements in the Atlantic Ocean: Comparison with satellite retrievals and GOCART model, Geophys. Res. Lett. 33, 14, L14817, DOI: 10.1029/2006GL026051.
  • Smirnov, A., A.M. Sayer, B.N. Holben, N.C. Hsu, S.M. Sakerin, A. Macke, N.B. Nelson, Y. Courcoux, T.J. Smyth, P. Croot, P.K. Quinn, J. Sciare, S.K. Gulev, S. Piketh, R. Losno, S. Kinne, and V.F. Radionov (2012), Effect of wind speed on aerosol optical depth over remote oceans, based on data from the Maritime Aerosol Network, Atmos. Meas. Tech. 5, 2, 377-388, DOI: 10.5194/amt-5-377-2012.
  • Vignati, E., G. de Leeuw, and R. Berkowicz (2001), Modeling coastal aerosol transport and effects of surf-produced aerosols on processes in the marine atmospheric boundary layer, J. Geophys. Res. 106, D17, 20225-20238, DOI: 10.1029/2000JD000025.
  • Welton, E.J., K.J. Voss, P.K. Quinn, P.J. Flatau, K. Markowicz, J.R. Campbell, J.D. Spinhirne, H.R. Gordon, and J.E. Johnson (2002), Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micropulse lidars, J. Geophys. Res. 107, D19, 8019, DOI: 10.1029/2000JD000038.
  • Witek, M.L., P.J. Flatau, P.K. Quinn, and D.L. Westphal (2007), Global sea-salt modeling: Results and validation against multicampaign shipboard measurements, J. Geophys. Res. 112, D08215, DOI: 10.1029/2006JD007779.
  • Wu, J. (1988), Bubbles in the near-surface ocean. A general description, J. Geophys. Res. 93, C1, 587-590, DOI: 10.1029/JC093iC01p00587.
  • Wu, J. (1990), Comment on “Film drop production as a function of bubble size” by D.C. Blanchard and L.D. Syzdek, J. Geophys. Res. 95, C5, 7389-7391, DOI: 10.1029/ JC095iC05p07389.
  • Zawadzka, O., K.M. Markowicz, A. Pietruczuk, T. Zielinski, and J. Jaroslawski (2013), Impact of urban pollution emitted in Warsaw on aerosol properties, Atmos. Environ. 69, 1, 15-28, DOI: 10.1016/j.atmosenv.2012.11.065.
  • Zhang, M., K. Carder, F.E. Muller-Karger, Z. Lee, and D.B. Goldgof (1999), Noise reduction and atmospheric correction for coastal applications of landsat thematic mapper imagery, Remote Sens. Environ. 70, 2, 167-180, DOI: 10.1016/S0034-4257(99)00031-0.
  • Zielinski, T., and J. Piskozub (2005), Studies of aerosols in the marine boundary layer in the coastal area during the EOPACE’99 campaign, Bound.-Lay. Meteorol. 116, 3, 533-541, DOI: 10.1007/s10546-005-0904-6.
  • Zielinski, T., and A. Zielinski (2002), Aerosol extinction and optical depth in the atmosphere over the Baltic Sea determined with lidar, J. Aerosol Sci. 33, 6, 47-61, DOI: 10.1016/S0021-8502(02)00043-5.
  • Zielinski, T., T. Petelski, P. Makuch, A. Strzalkowska, A. Ponczkowska, K.M. Markowicz, G. Chourdakis, G. Georgoussis, and S. Kratzer (2012), Sudies of aerosols advected to coastal areas with the use of remote techniques Acta Geophys. 60, 5, 1359-1385, DOI: 10.2478/s11600-011-0075-4.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.