Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous
cannonical link button


Polish Journal of Chemical Technology

Tytuł artykułu

Enzymatic synthesis and characterization of polycaprolactone by using immobilized lipase onto a surface-modified renewable carrier

Autorzy Ulker, C.  Gokalp, N.  Guvenilir, Y. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN In the present study, rice husk ash, which is a renewable and abundant material, was utilized as a carrier for lipase immobilization for the first time. Poly (ε-caprolactone) synthesis was successfully achieved by the new enzymatic catalyst: Candida antarctica lipase B immobilized onto surface-modified rice husk ashes by covalent binding. It was aimed to obtain optimum polymerization conditions at which highest molecular weight was reached and characterize the polymer produced. Moreover, thermal stability and effectiveness of the new biocatalyst in non-aqueous media were also shown with successful polymerization reactions. In addition, by using the new enzyme preparation, ε-caprolactone was able to be polymerized even at 30°C, which was promising for an energy saving process. Consequently, this work provides a new alternative route for poly (ε-caprolactone) synthesis.
Słowa kluczowe
EN enzymatic polymerization   ring opening polymerization   enzyme immobilization   lipase   renewable carrier  
Wydawca West Pomeranian University of Technology. Publishing House
Czasopismo Polish Journal of Chemical Technology
Rocznik 2016
Tom Vol. 18, nr 3
Strony 134--140
Opis fizyczny Bibliogr. 26 poz., rys., tab.
autor Ulker, C.
  • Istanbul Technical University, Department of Chemical Engineering, 34469, Istanbul, Turkey,
autor Gokalp, N.
  • Istanbul Technical University, Department of Chemical Engineering, 34469, Istanbul, Turkey
autor Guvenilir, Y.
  • Istanbul Technical University, Department of Chemical Engineering, 34469, Istanbul, Turkey
1. Ma, J., Li, Q., Song, B., Liu, D., Zheng, B., Zhang, Z. & Feng, Y. (2009). Ring-opening polymerization of ε-caprolactone catalyzed by a novel thermophilic esterase from the archaeon Archaeoglobus fulgidus. J. Mol. Catal. B Enzym. 56, 151-157. DOI: 10.1016/j.molcatb.2008.03.012.
2. Li, Q., Li, G., Yu, S., Zhang, Z., Ma, F. & Feng, Y. (2011). Ring-opening polymerization of ε-caprolactone catalyzed by a novel thermophilic lipase from Fervidobacterium nodosum. Process Biochem. 46, 253-257. DOI: 10.1016/j.procbio.2010.08.019.
3. Varma, I.K., Albertsson, A.C., Rajkhowa, R. & Srivastava, R.K. (2005). Enzyme catalyzed synthesis of polyesters, Prog. Polym. Sci. 30, 949-981. DOI: 10.1016/j.progpolymsci.2005.06.010.
4. Albertsson, A.C. & Srivastava, R.K. (2008). Recent developments in enzyme-catalyzed ring-opening polymerization. Adv. Drug Deliv. Rev. 60, 1077-1093. DOI: 10.1016/j. addr.2008.02.007.
5. Kobayashi, S. (2009). Recent developments in lipase-catalyzed synthesis of polyesters. Macromol. Rapid Commun. 30, 237-266. DOI: 10.1002/marc.200800690.
6. Kharrat, N., Ali, Y.B., Marzouk, S., Gargouri, Y.T. & Karra-Châabouni, M. (2011). Immobilization of Rhizopus oryzae lipase on silica aerogels by adsorption: Comparison with the free enzyme. Process Biochem. 46, 1083-1089. DOI: 10.1016/j. procbio.2011.01.029.
7. Zheng, M.M., Lu, Y., Dong, L., Guo, P.M., Deng, Q.C., Li, W.L., Feng, Y.Q. & Huang, F.H. (2012). Immobilization of Candida rugosa lipase on hydrophobic/strong cation-exchange functional silica particles for biocatalytic synthesis of phytosterol esters. Bioresour. Technol. 115, 141-146. DOI: 10.1016/j. biortech.2011.11.128.
8. Iyer, P.V. & Ananthanarayan, L. (2008). Enzyme stability and stabilization-Aqueous and non-aqueous environment. Process Biochem. 43, 1019-1032. DOI: 10.1016/j.procbio.2008.06.004.
9. Lee, D.H., Park, C.H., Yeo, J.M. & Kim, S.W. (2006). Lipase immobilization on silica gel using a cross-linking method. J. Ind. Eng. Chem. 12, 777-782.
10. Rodrigues, R.C., Berenguer-Murcia, A. & Fernandez-Lafuente, R. (2011). Coupling chemical modification and immobilization to improve the catalytic performance of enzymes. Adv. Synth. Catal. 353, 2216-2238. DOI: 10.1002/adsc.201100163.
11. Della, V.P., Kühn, I. & Hotza, D. (2002). Rice husk ash as an alternate source for active silica production. Mater. Lett. 57, 818-821. DOI: 10.1016/S0167-577X(02)00879-0.
12. Silva, A.L.P., Nascimento, R.G., Arakaki, L.N.H., Arakaki, T., Espínola, J.G.P. & Fonseca, M.G. (2013). Organofunctionalized silica gel as a support for lipase. J. Non. Cryst. Solids 376, 139-144. DOI: 10.1016/j.jnoncrysol.2013.05.026.
13. Ulker, C. (2015). Immobilization of Lipase on an Inorganic Support Material and Polycaprolactone Synthesis. Istanbul Technical University, Istanbul, Turkey.
14. Harrison, K.L. & Jenkins, M.J. (2004). The effect of crystallinity and water absorption on the dynamic mechanical relaxation behaviour of polycaprolactone. Polym. Int. 53, 1298-1304. DOI: 10.1002/pi.1517.
15. Öztürk-Düşkünkorur, H.M. (2012). Biopolymer Synthesis by Enzymatic Catalysis and Development of Nanohybrid Systems, Istanbul Technical University, Istanbul, Turkey.
16. Sha, K., Qin, L., Li, D., Liu, X. & Wang, J. (2005). Synthesis and characterization of diblock and triblock copolymer by enzymatic ring-opening polymerization of ε-caprolactone and ATRP of styrene. Polym. Bull. 54, 1-9. DOI: 10.1007/ s00289-005-0341-1.
17. Valentini, L., Macan, J., Armentano, I., Mengoni, F. & Kenny, J.M. (2006). Modification of fluorinated single-walled carbon nanotubes with aminosilane molecules. Carbon N.Y. 44, 2196-2201. DOI: 10.1016/j.carbon.2006.03.007.
18. Öney-Kıroğlu, C. (2014). Development and Characterization of Silica Based Super Insulation Materials. Istanbul Technical University, Istanbul, Turkey.
19. Ozsagiroglu, E., Iyisan, B. & Avcibasi-Guvenilir, Y. (2013). Comparing the in-vitro biodegradation kinetics of commercial and synthesized polycaprolactone films in different enzyme solutions. Ekoloji 22, 90-96. DOI: 10.5053/ekoloji.2013.8611.
20. Singhal, A. (2011). The Pearson Guide to Objective Chemistry for the AIEEE. India: Dorling Kindersley.
21. Elzein, T., Nasser-Eddine, M., Delaite, C., Bistac, S. & Dumas, P. (2004). FTIR study of polycaprolactone chain organization at interfaces. J. Coll. Interf. Sci. 273, 381-387. DOI: 10.1016/j.jcis.2004.02.001.
22. Kweon, H., Yoo, M.K., Park, I.K., Kim, T.H., Lee, H.C., Lee, H.S., Oh, J.S., Akaike. T. & Cho, C.S. (2003). Novel degradable polycaprolactone networks for tissue engineering. Biomaterials 24, 801-808. DOI: 10.1016/S0142-9612(02)00370-8.
23. Woodruff, M.A. & Hutmacher, D.W. (2010). The return of a forgotten polymer - Polycaprolactone in the 21st century. Prog. Polym. Sci. 35, 1217-1256. DOI: 10.1016/j.progpolymsci.2010.04.002.
24. Özsağıroğlu, E. (2011). Investigation of Effects of Reaction Mediums on Polycaprolactone Synthesis by Enzymatic Polymerization and Its Biodegradation. Istanbul Technical University, Istanbul, Turkey.
25. Rojo, S.R., Martín, A., Calvo, E.S. & Cocero, M.J. (2009). Solubility of polycaprolactone in supercritical carbon dioxide with ethanol as cosolvent. J. Chem. Eng. Data 54, 962-965. DOI: 10.1021/je8007364.
26. Öztürk-Düşkünkorur, H., Pollet, E., Phalip, V., Güvenilir, Y. & Avérous, L. (2014). Lipase catalyzed synthesis of polycaprolactone and clay-based nanohybrids. Polymer 55, 1648-1655. DOI: 10.1016/j.polymer.2014.02.016.
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-52688da3-d176-4e5c-a89b-837eafc2b5b1
DOI 10.1515/pjct-2016-0060