Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-502e3fb8-e251-40d9-98bc-09b4668269bb

Czasopismo

Fibres & Textiles in Eastern Europe

Tytuł artykułu

1D and 2D Shape Descriptors Applied in Fabric Drape Computer Simulation

Autorzy Gabrijelčič Tomc, H.  Hladnik, A. 
Treść / Zawartość
Warianty tytułu
PL Deskryptory kształtu 1D i 2D stosowane do symulacji układalności tkanin
Języki publikacji EN
Abstrakty
EN Fabric drape simulations accomplished by computer graphics software can provide the basis for effective communication among designers, manufacturers and other players in the apparel industry. The goal of our study was to investigate various 1D and 2D shape descriptors used to characterize renderings of 3D drape simulations in dependence on the geometry of collision objects and fabric type. Image processing routines were implemented to extract and compute the shape descriptors while principal components analysis was applied to interpret the relationships among the parameters studied. Drapes on cube, octahedron and prism were found to behave in a distinctively different manner compared to those produced using the other six collision objects: cone, cylinder, dodecahedron, gengon, sphere, and tube. A first principal component can be, to a large extent, represented by the following mutually strongly correlated 2D shape descriptors: area, major axis length, minor axis length, equivalent diameter, and perimeter. Analysis using 1D shape descriptors confirms these findings and additionally suggests that rubber-based drapes contain the lowest number of folds while those on polyester, wool, and sometimes silk and/or satin are characterized by the highest number of drape folds. These results were confirmed by visual examination of the drapes simulated.
PL Symulacja układalności tkanin realizowana przy pomocy programu grafiki komputerowej może być podstawą dla efektywnego porozumienia pomiędzy projektantami i wytwórcami w przemyśle odzieżowym. Celem naszych badań było rozpoznanie różnych deskryptorów kształtu 1D i 2 D dla scharakteryzowania renderów 3D symulacji układalności w zależności od geometrii obiektów kolizji i typu płaskich materiałów. Zastosowano metody obróbki obrazu dla wybrania i obliczenia deskryptorów kształtu w celu ustalenia zależności pomiędzy podstawowymi badanymi parametrami. Stwierdzono, że układalności na sześcianie, ośmiościanie i graniastosłupie zachowują się w sposób odrębny od pozostałych sześciu obiektów kolizji. Stwierdzono, że w dużej mierze następujące deskryptory kształtu są silnie wzajemnie skorelowane: powierzchnia, długość podstawowej osi, długość mniejszej osi, zastępcza średnica i zastępczy obwód. Analiza z zastosowaniem deskryptorów kształtu 1D potwierdza te ustalenia i dodatkowo pozwala na sugestię, że kształty wynikające z pokrywy gumowej zawierają najmniejszą ilość fałd, podczas gdy te z tkanin poliestrowych i wełnianych, a czasami i jedwabnych charakteryzują się przez najwyższa ilość fałd. Uzyskano dobrą korelację kształtów symulowanych i uzyskanych z pomiarów.
Słowa kluczowe
PL zasłona symulacji   tkaniny   deskryptory kształtu   grafika komputerowa   główna analiza składników   przetwarzanie obrazu  
EN drape simulation   fabric   shape descriptors   computer graphics   principal components analysis   image processing  
Wydawca Instytut Biopolimerów i Włókien Chemicznych
Czasopismo Fibres & Textiles in Eastern Europe
Rocznik 2015
Tom Nr 6 (114)
Strony 92--101
Opis fizyczny Bibliogr. 35 poz., rys., tab.
Twórcy
autor Gabrijelčič Tomc, H.
  • Department of Textiles, Graphic Arts and Design, Faculty of Natural Science and Engineering, University of Ljubljana, Ljubljana, Slovenia, helena.gabrijelcic@ntf.uni-lj.si
autor Hladnik, A.
  • Department of Textiles, Graphic Arts and Design, Faculty of Natural Science and Engineering, University of Ljubljana, Ljubljana, Slovenia, ales.hladnik@ntf.uni-lj.si
Bibliografia
1. Plumlee TM, Eischen J, Kenkare N, Pandurangan P. Evaluating 3D Drape Simulations: Methods and Metrics, 2003. http://www.ncsu.edu/project/ntcprojects/projects/F02- S08/Paper_Indedec_Sept03.pdf.
2. Magnenat-Thalmann, N. (Ed.). Modeling and Simulating Bodies and Garments. 1st ed. London: Springer-Verlag, 2010, p. 71-128.
3. Kočevar TN, Gabrijelčič Tomc H. Comparison of 3D Textile Simulations with Evaluation of Usability of Two Applications and Image Analysis of Renderings. Tekstilec 2013; 56(4): 323–334.
4. Dhande SG, Rao PVM, Tavakkoli S, Moore CL. Geometric Modeling of Draped Fabric Surfaces. In: IFIP TC5/WG5.2/WG5.10 CSI International Conference on Computer Graphics: Graphics, Design and Visualization, Amsterdam, North Holland, 1993, pp. 349-356.
5. Weil J. The synthesis of Cloth object. Computer Graphics (Proc Siggraph) 1986; 20(4): 49−54.
6. Feynman CR. Modelling the Appearance of Cloth. Master dissertation. Massachusetts Institute of Technology, Cambridge, UK, 1986.
7. Terzopoulos D, Platt J, Barr A, Fleisher K. Elastically deformable models. Computer Graphics 1987; 21(4): 205-214.
8. Collier JR, Collier BJ, O’Toole G, Sargand SM. Drape Prediction by means of Finiteelement Analysis. Journal of Textile Institute 1991; 82(1): 96-107.
9. Kang TJ, Yu WR. Drape Simulation of Woven Fabric by Using the Finite-element Method. The Journal of The Textile Institute 1995; 86(4): 635-648.
10. Sul IH, Kang TJ. Improvement of drape simulation speed using constrained fabric collision. International Journal of Clothing Science and Technology 2004; 16(1/2): 43- 50.
11. Breen ED, House HD, Wozny JM. Predicting the drape of woven cloth using interacting particles. In: SIGGRAPH ‘94, New York, USA, 1994, pp. 365-372.
12. Eberhardt B, Weber A, Strasser W. A fast flexible particle system model for cloth draping. IEEE, Computer Graphic and Application 1996; 16(5) : 51−59.
13. Baraff D, Witkin A. Large steps in cloth simulation. In: SIGGRAPH’ 98. Computer Graphics, Annual Conference Series. Orlando, July 19–24, 1998, pp. 43−54; http://www.cs.cmu.edu/~baraff/papers/sig98.pdf.
14. Hu J. (Ed.). Fabric testing (1st ed.). Woodhead Publishing Series in Textiles (Boca Raton), 2008, pp. 114-117.
15. BS 5058:1973. British Standards Institution. Method for the assessment of drape fabrics. London: British Standard Institution.
16. Žunič Lojen D, Jevšnik S. Some aspects of fabric Drape. Fibres & Textiles in Eastern Europe 2007; 15(63): 39-45.
17. Mizutani C, Amano T, Sakaguchi Y. A new apparatus for the study of fabric drape. Textile Research Journal 2005; 75(1): 81–87.
18. Cusic GE. The Measurement of Fabric Drape. Journal of Textile Institute 1968; 56(11): 253−260.
19. Sanad R, Cassidy T, Cheung V. Fabric and Garment Drape Measurement - Part 1. Journal of Fibre Bioengineering & Informatics 2012; 5(4): 341–358.
20. Sanad R, Cassidy T, Cheung V, Evans E. Fabric and Garment Drape Measurement - Part 2. Journal of Fibre Bioengineering and Informatics 2013; 6(1): 1-22.
21. Jeong YJ. A Study of Fabric-drape Behaviour with Image Analysis Part I: Measurement, Characterisation, and Instability. Journal of the Textile Institute 1998; 89(1): 59−69.
22. Jeong YJ, Phillips DG. A Study of Fabric-drape Behaviour with Image Analysis. Part II: The Effects of Fabric Structure and Mechanical Properties on Fabric Drape. Journal of the Textile Institute 1998; 89(1): 70−79.
23. Kenkare N, Plumlee TM. Fabric Drape Measurements: a modified Method Using Digital Image Processing. Journal of Textile and Apparel, Technology and Measurement 2005; 4(3): 1-8; http://faculty.mu.edu.sa/public/uploads/1345907225.1717Plumlee_full_148_05.pdf.
24. Behera BK, Mishra R. Objective measurement of fabric appearance using digital image processing. Journal of Textile Institute 2006; 97(2): 147-153.
25. Hamdi T, Ghith A, Fayala F. Study of drape parameter using image analysis. International Journal of Engineering Science and Technology 2013; 5(7): 1456− 1464.
26. Gnanavel P, Ananthakrishnan T. Development of a Three Dimensional Approach to Acquire a Drape Contour and Studies on Influential Factors. Fibres & Textiles in Eastern Europe 2013; 21(100): 137-143.
27. Farajikhah S, Madanipour K, Saharkhiz S, Latifi M. Shadow Moiré Aided 3-D Reconstruction of Fabric Drape. Fibres and Polymers 2012; 13(7): 928-935.
28. Mirjalili, S., A., Ekhtiyari, E. Wrinkle Assessment of Fabric Using Image Processing, Fibres & Textiles in Eastern Europe 2010; 18(82): 60-63.
29. Tien-Wei S, Pin-Ning W, Jer-Yan L. Subjective and Objective Evaluation Methods to defined the Peack-trough Treshold of the Drape Fabric Node. Textile Research Journal 2009; 79(13): 1223-1234.
30. Payvandy P. Evaluation of Fabric Drape Coefficient Using Image Processing and Fractal Dimension. In: MVIP 2011; 7th Iranian conference on machine vision and image processing, Iran University of Science and Technology, 16-17 November 2011; http://www.pedram-payvandy.com/paper/conf33.pdf.
31. Jolliffe IT. Principal Component Analysis. 2nd ed. Series: Springer Series in Statistics, Springer, NY, 2002, p. 28.
32. Hamdi T, Ghith A, Fayala F. A Principal Component Analysis (PCA) Method for predicting the Correlation between some fabric Parameters and the Drape. AUTEX Research Journal 2014; 14(1): 22-27.
33. Bouman KL, Xiao B, Battaglia P, Freeman WT. Estimating the material properties of fabric from video. In: Computer Vision (ICCV), 2013 IEEE International Conference. Massachusetts Inst. of Technol., Cambridge, MA, USA, 2013. p. 1984-1991. http://people.csail.mit.edu/klbouman/pw/papers_and_presentations/iccv2013_bouma n.pdf.
34. Cloth properties, 3ds Max, Autodesk; http://docs.autodesk.com/3DSMAX/15/ENU/3dsMax-Help/index.html?url=files/GUID-0067DEB6-968E-4CD8-B019- C0E638CFA151.htm,topicNumber=d30e73198.
35. Properties of image regions, MATLAB; http://www.mathworks.com/help/images/ref/regionprops.html.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-502e3fb8-e251-40d9-98bc-09b4668269bb
Identyfikatory
DOI 10.5604/12303666.1167425