PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Strength analysis of solder joints used in microelectronics packaging

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Badania wytrzymałości połączeń lutowanych stosowanych w montażu w mikroelektronice
Języki publikacji
EN PL
Abstrakty
EN
The aim of the research was the problem of damage accumulation for solder alloys used in microelectronics packaging due to creep and fatigue as a result of a combined profile of loading conditions. The selected failure modes affect the lifetime of contemporary electronic equipment. So far the research activities are focused on a single failure mode and the problem of their interaction is often omitted. Taking into account the failure modes interaction would allow more precise lifetime prediction of the contemporary electronic equipment and/or would allow for reduction of time required for reliability tests. Within the taken research framework the reliability analysis of solder joints was conducted for the Sn63Pb37 solder alloy using the Hot Bump Pull method. The results of the presented research contain: reliability tests, statistical analysis and the problem of a damage accumulation due to a combined profile of loading conditions.
PL
Celem badań był problem kumulacji uszkodzeń dla stopów lutowniczych stosowanych w montażu w mikroelektronice w wyniku zmęczenia i pełzania na skutek złożonego profilu obciążeń. Wybrane rodzaje uszkodzeń przyczyniają się do ograniczenia czasu życia współczesnych urządzeń elektronicznych. Aktualnie prowadzi się badania z wykorzystaniem jednego rodzaju uszkodzeń i często pomijany jest problem ich wzajemnej interakcji. Uwzględnienie problemu wzajemnej interakcji pozwoliłoby na bardziej precyzyjne prognozowanie bezawaryjnego czasu pracy współczesnych urządzeń elektronicznych i/lub przyspieszenie testów niezawodnościowych. W ramach zrealizowanych badań przeprowadzono analizę wytrzymałości połączeń lutowanych dla stopu lutowniczego Sn63Pb37 z wykorzystaniem metody Hot Bump Pull. Wyniki przedstawionych badań obejmują: analizę wytrzymałości, analizę statystyczną oraz problem kumulacji uszkodzeń w wyniku złożonego profilu obciążeń.
Rocznik
Strony
297--305
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
  • Wroclaw University of Science and Technology Faculty of Microsystem Electronics and Photonics ul. Janiszewskiego 11/17, 50-372 Wrocław, Poland, artur.wymyslowski@pwr.edu.pl
  • Wroclaw University of Science and Technology Faculty of Microsystem Electronics and Photonics ul. Janiszewskiego 11/17, 50-372 Wrocław, Poland, krystian.jankowski@pwr.edu.pl
Bibliografia
  • 1. Arra M, Shangguan D, Ristolainen E. Characterization of mechanical performance of Sn/Ag/Cu solder joints with different component lead coatings. Soldering and Surface Mount Technology 2004; 16(1): 35-43, https://doi.org/10.1108/09540910410517031.
  • 2. Bisschop J. Failure mechanisms in plastic package IC's. Proceedings of 2nd EuroSimE Conference 2002: 328-331.
  • 3. Bukat K, Hackiewicz H. Lutowanie bezołowiowe, Warszawa: Wydawnictwo BTC, 2007.
  • 4. Chicot D, Tilkin K, Jankowski K, Wymysłowski A. Reliability analysis of solder joints due to creep and fatigue in microelectronic packaging using microindentation technique, Microelectronics Reliability 2013; 53(5): 761-766, https://doi.org/10.1016/j.microrel.2013.01.008.
  • 5. DAGE UK Hot Bump Pull/Hot Pin Pull, 2011.
  • 6. Dasgupta A, Oyan C, Barker D, Pecht M. Solder Creep-Fatigue Analyses by an Energy Partitioning, Journal of Electronic Packaging 1991; 114(2): 152-160, https://doi.org/10.1115/1.2906412.
  • 7. Dowling NE, Kampe SL, Kral MV. Mechanical Behavior of Materials, Pearson Prentice Hall, 2018.
  • 8. Felba J. Montaż w Elektronice, Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej, 2010.
  • 9. Ganesan S. Lead-free Electronics, John Wiley & Sons Inc., 2006, https://doi.org/10.1002/047000780X.
  • 10. Holdsworth SR. Component assessment data requirements from creep-fatigue tests, ASTM International 2011; 1-14, https://doi.org/10.1520/JAI103583.
  • 11. Jankowski K, Wymysłowski A. Life prediction of lead alloy based on multi-failure criteria. 18th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems 2017; 1-5, https://doi.org/10.1109/EuroSimE.2017.7926217.
  • 12. Jankowski K, Wymysłowski A, Chicot D. Combined loading and failure analysis of lead-free solder joints due to creep and fatigue phenomena, Soldering & Surface Mount Technology 2014; 26(1): 1-6, https://doi.org/10.1108/SSMT-10-2013-0029.
  • 13. Judd M, Brindley K. Soldering in Electronics Assembly, Elsevier Ltd., 1999, https://doi.org/10.1016/B978-075063545-5/50004-2.
  • 14. Kim DH. Reliability Study of SnPb and SnAg Solder Joints in PBGA Packages, The University of Texas at Austin, 2007.
  • 15. Kisiel R. Podstawy technologii montażu dla elektroników, Wydawnictwo BTC, 2012.
  • 16. Lau JH. Solder Joint Reliability, Boston MA: Springer, 1991, https://doi.org/10.1007/978-1-4615-3910-0.
  • 17. Lau JH. Thermal Stress and Strain in Microelectronic Packaging, US Springer, 1993, https://doi.org/10.1007/978-1-4684-7767-2.
  • 18. Manson SS, Halford GR. Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage, International Journal of Fracture 1981; 17: 169-192, https://doi.org/10.1007/BF00053519.
  • 19. Matkowski PK, Dudek R, Kreyssig K. Reliability testing of SnAgCu solder joints under combined loading. Micromaterials and Nanomaterials 2011; 13: 86-91.
  • 20. Miller D, Priest RH, Ellison EG. A review of material response and life prediction techniques, Materials 2015; 8(11): 7757-7769, https://doi.org/10.3390/ma8115418.
  • 21. Miner MA. Cumulative Damage in Fatigue, Journal of Applied Mechanics 1945; 12 (3): 159-164.
  • 22. Nelson W. Accelerated Testing, New York: Wiley, 1990, https://doi.org/10.1002/9780470316795.
  • 23. Nguyen J, et al. Backward compatibility study of lead free area array packages with tin-lead soldering process, IPC - Printed Circuits Expo and the Designers Summit 2006.
  • 24. Numerical Analysis Guidelines for Microelectronics Packaging Design and Reliability, IPC/JEDEC-9301: 2018.
  • 25. Qu J. Thermomechanical Reliability of Microelectronic Packaging. Comprehensive Structural Integrity 2007; 8: 219-239, https://doi.org/10.1016/B0-08-043749-4/08040-X.
  • 26. ReliaSoft, https://www.reliasoft.com/, 2019.
  • 27. Seraphim DP, Lasky R, Li CY. Principles of Electronic Packaging, New York: McGraw-Hill, 1989, https://doi.org/10.1115/1.3226524.
  • 28. Stone D, Wilson R, Li CY. The Mechanisms of Damage Accumulation in Solders during Thermal Fatigue. Proccedings of 36th Electronic Components Conference 1986: 630-635.
  • 29. Suhir E. Interfacial stresses in biomaterial thermostats, Journal of Applied Mechanics 1989; 56: 595-600, https://doi.org/10.1115/1.3176133.
  • 30. Timoshenko S. Analysis of bi-metal thermostats, Journal of the Optical Society of America 1925: 233-255, https://doi.org/10.1364/JOSA.11.000233.
  • 31. Tummala RR. Fundamentals of Microsystems Packaging, McGraw Hill, 2001.
  • 32. Tummala RR, Rymaszewski EJ, Klopfenstein AG. Microelectronics Packaging Handbook, Springer Science+Business Media Dordrecht, 1997, https://doi.org/10.1007/978-1-4615-6037-1.
  • 33. Van Driel WD. Virtual Thermo-Mechanical Prototyping of Microelectronics Devices, The Netherlands: PrintPartners Ipskamp, 2007
  • 34. Wareing J. Mechanisms of high temperature fatigue and creep-fatigue failure in engineering materials, United Kingdom: Applied Science, 1983.
  • 35. Wymysłowski A. Numeryczne metody projektowania termomechanicznego w montażu elektronicznym. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej, 2007.
  • 36. Wymysłowski A, Dowhań Ł. Application of nanoindentation technique for investigation of elasto-plastic properties of the selected thin film materials, Microelectronics Reliability 2013; 53(3): 443-451, https://doi.org/10.1016/j.microrel.2012.10.009.
  • 37. Zahavi E. Fatigue design - life expectancy of Machine Parts, A Solomon Press Book, 1996.
  • 38. Zhang GQ. The challenges of virtual prototyping and qualification for future microelectronics, Microelectronics Reliability 2003; 43: 1777- 1785, https://doi.org/10.1016/S0026-2714(03)00299-3.
  • 39. Zhang GQ, Ernst LJ, de Saint Leger O. Benefiting from thermal and mechanical simulation in microelectronics, Dordrecht: Kluwer Academic Publishers, 2000, https://doi.org/10.1007/978-1-4757-3159-0.
  • 40. Zhang GQ, van Driel WD, Fan XJ. Mechanics of Microelectronics, Dordrecht: Springer, 2006, https://doi.org/10.1007/1-4020-4935-8
  • 41. Zienkiewicz OC, Taylor R, Zhu JZ. The Finite Element Method: Its Basis and Fundamentals, Elsevier Butterworth-Heinemann, 2005.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5010c5ae-486d-4348-b579-8a605a2328a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.