Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Applicability of notch stress-strain correction methods to low-cycle fatigue life prediction of turbine rotors subjected to thermomechanical loads

Treść / Zawartość
Warianty tytułu
Języki publikacji
The paper analyses the possibility of using analytical methods of notch stress-strain correction in low-cycle fatigue life predictions of steam turbine rotors operating under non-isothermal conditions. The assessment was performed by comparing strain amplitudes calculated using the Neuber and Glinka-Molski methods and those predicted by the finite element analysis (FEA) employing elastic-plastic material model. The results of investigations reveal that the Neuber method provides an upper bound limit, while the GlinkaMolski method results in a lower bound limit of strain amplitude. In the case of rotor heat grooves, both methods provide equally accurate results of notch strain amplitude and are suited to estimating lower and upper bound limits of low-cycle fatigue life under non-isothermal conditions.
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
  • Energy Conversion Department, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
  • Faculty of Technical Sciences, Department of Mechanics and Machine Design, University of Warmia and Mazury, Oczapowskiego 2, 10-719 Olsztyn, Poland
  • 1. Armstrong P., Frederick C. (1966), A mathematical representation of the multiaxial Bauschinger effect, CEGB Report No. RD/B/N 731.
  • 2. Banaszkiewicz M. (2015), Multilevel approach to lifetime assessment of steam turbines, International Journal of Fatigue, 73, 39–47.
  • 3. Banaszkiewicz M. (2016), Online monitoring and control of thermal stresses in steam turbine rotors, Applied Thermal Engineering, 94, 763–776.
  • 4. Banaszkiewicz M. (2018), The low-cycle fatigue life assessment method for online monitoring of steam turbine rotors, International Journal of Fatigue, 113, 311-323.
  • 5. Bednarski T. (1995), Mechanics of plastic flow, PWN, Warsaw (in Polish).
  • 6. Buczyński A., Glinka G. (1997), Elastic-plastic stress-strain analysis of notches under non-proportional loading, 5th International Conference on Biaxial/Multiaxial Fatigue and Fracture, Cracow.
  • 7. Buczyński A., Glinka G. (2001), An analysis of elasto-plastic strains and stresses in notched bodies subjected to cyclic non-proportional loading paths, 6th International Conference on Biaxial/Multiaxial Fatigue and Fracture, Lisbon.
  • 8. Celins C., Pinto G.R.S., Teixeira T., Xavier E. (2017), A steam turbine dynamic model for full scope power plant simulations, Applied Thermal Engineering, 120, 593–602.
  • 9. Chaboche J.L. (1986), Time-independent constitutive theories for cyclic plasticity, International Journal of Plasticity, 2(2), 149–188.
  • 10. Garud Y.S. (1981), A new approach to the evaluation of fatigue under multiaxial loadings, Journal of Engineering Materials and Technology -Transactions ASME, 103(2), 118–125.
  • 11. Gehlot S., Mahadevan P., Kannusamy R. (2012), Analytical correction of nonlinear thermal stresses under thermo-mechanical cyclic loadings, Proceedings of ASME Turbo Expo, Copenhagen.
  • 12. Gordon A.P., Williams E.P., Schulist M. (2008), Applicability of Neuber’s rule to thermomechanical fatigue, Proceedings of ASME Turbo Expo, Berlin.
  • 13. Guo W., Wang C.H., Rose L.R.F. (1998), Elasto-plastic analysis of notch-tip fields in strain hardening materials, Aeronautical and Maritime Research Laboratory Report, DSTO-RR-0137, 1–36.
  • 14. Harkegard G., Mann T. (2003), Neuber prediction of elastic-plastic strain concentration in notched tensile specimens under large-scale yielding, Journal of Strain Analysis, 38, 79-94.
  • 15. Hoffman M., Seeger T. (1985), A generalized method for estimating multiaxial elastic-plastic notch stresses and strains – Part I and II, ASME Journal of Engineering Materials and Technology, 107, 250–260.
  • 16. Ince A. (2016), Numerical validation of computational stress and strain analysis model for notched components subject to nonproportional loadings, Theoretical and Applied Fracture Mechanics, 84, 26–37.
  • 17. Ince A. (2017), A Computational Multiaxial Model for Stress Strain Analysis of Ground Vehicle Notched Components, SAE International Journal of Engines, 10(2), 316–322.
  • 18. Ince A., Bang D. (2017), Deviationic Neuber method for stress and strain analysis at notches under multiaxial loadings, International Journal of Fatique, 102, 229–240.
  • 19. Ince A., Glinka G. (2013), A numerical method for elasto-plastic notch-root stress-strain analysis, Journal of Strain Analysis, 48(4), 229–244.
  • 20. Ince A., Glinka G. (2016), Innovative computational modeling of multiaxial fatigue analysis for notched components, International Journal of Fatigue, 82, 134–145.
  • 21. Ince A., Glinka G., Buczyński A. (2014), Computational modeling of multiaxial elasto-plastic stress-strain response for notched components under non-proportional loading, International Journal of Fatigue, 62, 42–52.
  • 22. Koneko Y., Kanki H., Kawashita R. (2017), Steam turbine rotor design and rotor dynamics analysis [in book:] Advances in steam turbines for modern power plant, 127-152, Woodhead Publishing.
  • 23. Kosman W., Roskosz M., Nawrat K. (2009), Thermal elongations in steam turbines with welded rotors made of advanced materials at supercritical steam parameters, Applied Thermal Engineering, 29 (16), 3386–3393.
  • 24. Lemaitre J., Desmorat R. (2005), Engineering damage mechanics, Springer-Verlag, Berlin Heidelberg.
  • 25. Moftakhar A., Buczyński A., Glinka G. (1995), Calculation of elasto-plastic strains and stresses in notches under multiaxial loading, International Journal of Fracture, 70, 357–373.
  • 26. Molski K., Glinka G. (1981), A method of elastic-plastic stress and strain calculation at a notch root, Material Science and Engineering, 50, 93–100.
  • 27. Mróz Z. (1967), On the description of anizotropic work hardening, Journal of the Mechanicsand Physics of Solids, 15, 163–175.
  • 28. Neuber H. (1961), Theory of stress concentration for shear-strained prismatical bodies with arbitrary non-linear stress-strain law, ASME Journal of Applied Mechanics, 28, 544–550.
  • 29. Seweryn A. (1997), Damage accumulation and cracking of elements under complex states of loading, Scientific Transactions of Bialystok University of Technology, 42.
  • 30. Shin C.S., Man K.C., Wang C.M. (1994), A practical method to estimate the stress concentration of notches, International Journal of Fatigue, 16, 242–256.
  • 31. Szala J., Ligaj B., Szala G. (2014), Sources of differences in calculations and experimental test results of fatigue life of structural elements, Scientific Journal of Silesian University of Technology. Series Transport, 83, 271–277.
  • 32. Tricoteaux A., Fardoun F., Degallaix S., Sauvage F. (2007), Fatique crack initiation life prediction in high strength structural steel welded joints, Fatique & Fracture of Engineering Materials & Structures, 18(2), 189–200.
  • 33. Viswanathan R. (1989), Damage mechanisms and life assessment of high-temperature components, ASM International, Metals Park, Ohio.
  • 34. Zeng Z., Fatemi A. (2001), Elasto-plastic stress and strain behaviour at notch roots under monotonic and cyclic loadings, Journal of Strain Analysis, 36, 287–300.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.