PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical analysis of the biomechanical effects on micro-vessels by ultrasound-driven cavitation

Treść / Zawartość
Identyfikatory
Języki publikacji
EN
Abstrakty
EN
Purpose: The goal of this study was to evaluate the biomechanical effects such as sonoporation or permeability, produced by ultrasound-driven microbubbles (UDM) within microvessels with various parameters. Methods: In this study, a bubble-fluid-solid coupling system was established through combination of finite element method. The stress, strain and permeability of the vessel wall were theoretically simulated for different ultrasound frequencies, vessel radius and vessel thickness. Results: the bubble oscillation induces the vessel wall dilation and invagination under a pressure of 0.1 MPa. The stress distribution over the microvessel wall was heterogeneous and the maximum value of the midpoint on the inner vessel wall could reach 0.7 MPa as a frequency ranges from 1 to 3 MHz, and a vessel radius and an initial microbubble radius fall within the range of 3.5–13 μm and 1–4 μm, respectively. With the same conditions, the maximum shear stress was equal to 1.2 kPa and occurred at a distance of ±5 μm from the midpoint of 10 μm and the maximum value of permeability was 3.033 × 10–13. Conclusions: Results of the study revealed a strong dependence of biomechanical effects on the excitation frequency, initial bubble radius, and vessel radius. Numerical simulations could provide insight into understanding the mechanism behind bubble-vessel interactions by UDM, which may explore the potential for further improvements to medical applications.
Rocznik
Strony
95--105
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
  • College of Mathematics and Physics, University of South China, Hengyang, China
autor
  • College of Mathematics and Physics, University of South China, Hengyang, China
autor
  • College of Mathematics and Physics, University of South China, Hengyang, China
autor
  • College of Mathematics and Physics, University of South China, Hengyang, China
autor
  • College of Mathematics and Physics, University of South China, Hengyang, China
Bibliografia
  • [1] CHEN H., BRAYMAN A.A., BAILEY M.R., MATULA T.J., Blood vessel rupture by cavitation, Urol. Res., 2010, 38 (4), 321–326, DOI: 10.1007/s00240-010-0302-5.
  • [2] CHEN H., KREIDER W., BRAYMAN A.A., BAILEY M.R., MATULA T.J., Blood vessel deformations on microsecond time scales by ultrasonic cavitation, Phys. Rev. Lett., 2011, 106 (3), 034301, DOI: 10.1103/PhysRevLett.106.034301.
  • [3] CHOI J.J., FESHITAN J.A., BASERI B., WANG S., TUNG Y.S., BORDEN M.A., KONOFAGOU E.E., Microbubble-size dependence of focused ultrasound-induced blood-brain barrier opening in mice in vivo, IEEE. Trans. Biomed. Eng., 2010, 57 (1), 145–154, DOI: 10.1109/TBME.2009.2034533.
  • [4] FAN Z., KUMON R.E., DENG C.X., Mechanisms of microbubble-facilitated sonoporation for drug and gene delivery, Ther. Deliv., 2014, 5 (4), 467–486, DOI: 10.4155/tde.14.10.
  • [5] GUO X., CAI C., XU G., YANG Y., TU J., HUANG P., ZHANG D., Interaction between cavitation microbubble and cell: A simulation of sonoporation using boundary element method (BEM), Ultrason. Sonochem., 2017, 39, 863–871, DOI: 10.1016/ j.ultsonch.2017.06.016. [
  • 6] HELFIELD B., CHEN X., WATKINS S.C., VILLANUEVA R.S., Biophysical insight into mechanisms of sonoporation, Proc. Natl. Acad. Sci., 2016, 113 (36), 9983–9988, DOI: 10.1073/ pnas.1606915113.
  • [7] HOSSEINKHAH N., CHEN H., MATULA T.J., BURNS P.N., HYNYNEN K., Mechanisms of microbubble-vessel interactions and induced stresses: a numerical study, J. Acoust. Soc. Am., 2013, 134 (3), 1875–1885, DOI: 10.1121/1.4817843.
  • [8] HU J.W., QIAN S.Y., SUN J.N., LÜ Y.B., HU P., Microflowinduced shear stress on biomaterial wall by ultrasoundinduced encapsulated microbubble oscillation, Chin. Phys. B., 2015, 24 (9), 094301–094306, DOI: 10.1088/1674-1056/ 24/9/094301.
  • [9] KLOTZ A.R., HYNYNEN K., Simulations of the Devin and Zudin modified Rayleigh-Plesset equations to model bubble dynamics in a tube, Technical Acoustics., 2010, 30 (6).
  • [10] KOBIELARZ M., Effect of collagen fibres and elastic lamellae content on the mechanical behaviour of abdominal aortic aneurysms, Acta Bioeng. Biomech., 2020, 22 (3), 69–74, DOI: 10.37190/ABB-01580-2020-02.
  • [11] KOSHIYAMA K., WADA S., Molecular dynamics simulations of pore formation dynamics during the rupture process of a phospholipid bilayer caused by high-speed equibiaxial stretching, J. Biomech. 2011, 44(11), 2053–2058, DOI: 10.1016/ j.jbiomech.2011.05.014.
  • [12] KRASOVITSKI B., KIMMEL E., Shear stress induced by a gas bubble pulsating in an ultrasonic field near a wall, IEEE Trans. Ultrason. Ferroelectr. Freq. Control., 2004, 51 (8), 973–979, DOI: 10.1109/TUFFC.2004.1324401.
  • [13] LI W., YUAN T., XIA-SHENG G., DI X., DONG Z., Microstreaming velocity field and shear stress created by an oscillating encapsulated microbubble near a cell membrane, Chin. Phys. B., 2014, 23, 124302, DOI: 10.1088/1674-1056/23/12/124302.
  • [14] LIN S.J., JAN K.M., WEINBAUM S., CHIEN S., Transendothelial transport of low density lipoprotein in association with cell mitosis in rat aorta, Arteriosclerosis, 1989, 9 (2), 230–236, DOI: 10.1161/01.ATV.9.2.230.
  • [15] MAN V.H., TRUONG P.M., LI M.S., WANG J., VAN-OANH N.T., DERREUMAUX P., NGUYEN P.H., Molecular Mechanism of the Cell Membrane Pore Formation Induced by Bubble Stable Cavitation, J. Phys. Chem. B., 2019, 123 (1), 71–78, DOI: 10.1021/acs.jpcb.8b09391.
  • [16] MIAO H., GRACEWSKI S.M., DALECKI D., Ultrasonic excitation of a bubble inside a deformable tube: implications for ultrasonically induced hemorrhage, J. Acoust. Soc. Am., 2008, 124 (4), 2374–2384, DOI: 10.1121/1.2967488.
  • [17] MILLER D.L., QUDDUS J., Diagnostic ultrasound activation of contrast agent gas bodies induces capillary rupture in mice, Proc. Natl. Acad. Sci. U.S.A., 2000, 97 (18), 10179–10184, DOI: 10.7863/jum.2002.21.12.1435.
  • [18] MILLER M.W., Cell size relations for sonolysis, Ultrasound. Med. Biol., 2004, 30 (10), 1263–1267, DOI: 10.1016/ j.ultrasmedbio.2004.07.005.
  • [19] OLGAC U., KURTCUOGLU V., POULIKAKOS D., Computational modeling of coupled blood-wall mass transport of LDL: effects of local wall shear stress, Am. J. Physiol. Heart. Circ. Physiol., 2008, 294 (2), H909–919, DOI: 10.1152/ajpheart.01082.2007.
  • [20] PERENO V., LEI J., CARUGO D., STRIDE E., Microstreaming inside Model Cells Induced by Ultrasound and Microbubbles, 2020, 36 (23), 6388–6398, DOI: 10.1021/acs.langmuir.0c00536.
  • [21] QIN S., FERRARA K.W., The natural frequency of nonlinear oscillation of ultrasound contrast agents in microvessels, Ultrasound Med. Biol., 2007, 33 (7), 1140–1148, DOI: 10.1016/ j.ultrasmedbio.2006.12.009.
  • [22] RAMIAR A., LARIMI M.M., RANJBAR A.A., Investigation of blood flow rheology using Second-Grade viscoelastic model (PhanThien–Tanner) within carotid artery, Acta Bioeng. Biomech., 2017, 19 (3), 27–14. DOI: 10.5277//ABB-00775-2016-05.
  • [23] ROWE A.J., FINLAY H.M., CANHAM P.B., Collagen biomechanics in cerebral arteries and bifurcations assessed by polarizing microscopy, J. Vasc. Res., 2003, 40 (4), 406–415, DOI: 10.1159/000072831.
  • [24] SASSAROLI E., HYNYNEN K., Resonance frequency of microbubbles in small blood vessels: a numerical study, Phys. Med. Biol., 2005, 50 (22), 5293–5305, DOI: 10.1088/ 0031-9155/50/22/006.
  • [25] SIERRA C., ACOSTA C., CHEN C., WU S.Y., KARAKATSANI M.E., BERNAL M., KONOFAGOU E.E., Lipid microbubbles as a vehicle for targeted drug delivery using focused ultrasound-induced blood-brain barrier opening, J. Cereb. Blood. Flow. Metab., 2017, 37 (4), 1236–1250, DOI: 10.1177/0271678X16652630.
  • [26] SNOWHILL P.B., SILVER F.H., A Mechanical Model of Porcine Vascular Tissues-Part II: Stress-Strain and Mechanical Properties of Juvenile Porcine Blood Vessels, Cardiovascular Engineering, 2005, 5 (4), 157–169, DOI: 10.1007/s10558-005-9070-1.
  • [27] STIEGER S.M., CASKEY C.F., ADAMSON R.H., QIN S., CURRY F.R., WISNER E.R., FERRARA K.W., Enhancement of vascular permeability with low-frequency contrast-enhanced ultrasound in the chorioallantoic membrane model, Radiology, 2007, 243 (1), 112–121, DOI: 10.1148/radiol.2431060167.
  • [28] WU J., Theoretical study on shear stress generated by microstreaming surrounding contrast agents attached to living cells, Ultrasound. Med. Biol., 2002, 28 (1), 125–129, DOI: 10.1016/S0301-5629(01)00497-5.
  • [29] YE T., BULL J.L. Microbubble expansion in a flexible tube, J. Biomech. Eng., 2006, 128 (4), 554–563, DOI: 10.1115/1.2206200.
  • [30] YU H., CHEN S., A model to calculate microstreaming-shear stress generated by oscillating microbubbles on the cell membrane in sonoporation, Biomed. Mater. Eng., 2014, 24 (1), 861–868, DOI: 10.3233/BME-130878.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Identyfikator YADDA
bwmeta1.element.baztech-4bc7b732-8204-44a9-a0af-df458ff6f06a