Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Model for Fatigue Crack Growth in the Paris Regime under the Variability of Cyclic Hardening and Elastic Properties

Treść / Zawartość
Warianty tytułu
Języki publikacji
Over the last 60 years, several models have been developed governing different zones of fatigue crack growth from the threshold zone to final failure. The best known model is the Paris law and a number of its based on mechanical, metallurgical and loading parameters governing the propagation of cracks. This paper presents an analytical model developed to predict the fatigue crack propagation rate in the Paris regime, for different material properties, yield strength (σy), Young’s modulus (E) and cyclic hardening parameters (K’, n’) and their influence by variability. The cyclic plastic deformation at a crack tip or any other cyclic hardening rule may be used to reach this objective, for to investigate this influence, these properties of the model are calibrated using available experimental data in the literature. This FCGR model was validated on Al-alloys specimens under constant amplitude load and shows good agreement with the experimental results.
Opis fizyczny
Bibliogr. 55 poz., rys., tab., wykr., wzory
  • Department of Mechanical Engineering, Faculty of Technology, Laboratory of Materials and Reactive Systems (LMRS), University of Sidi Bel-Abbes, Algeria
  • Department of Mechanical Engineering, Faculty of Technology, Laboratory of Materials and Reactive Systems (LMRS), University of Sidi Bel-Abbes, Algeria
  • Polytech’Lille1, Laboratory of Mechanical of Lille (LML), University of Lille1, France
  • [1] N. Vikram and R. Kumar, “Review on fatigue-crack growth and finite element method,” Int. J. Sci. Eng. Res., vol. 4, no. 4, pp. 833–843, 2013.
  • [2] F. Bergner, G. Zouhar, and G. Tempus, “The material-dependent variability of fatigue crack growth rates of aluminium alloys in the Paris regime,” Int. J. Fatigue, vol. 23, pp. 383–394, 2001.
  • [3] J. H. Melson, “Fatigue crack growth analysis with finite element methods and a monte carlo simulation,” Thesis Master, Faculty of the Virginia Polytechnic Institute, 2014.
  • [4] T. Mann, “The influence of mean stress on fatigue crack propagation in aluminium alloys,” Int. J. Fatigue, vol. 29, no. 8, pp. 1393–1401, 2007.
  • [5] A. E. M. Alaoui, “Influence du chargement sur la propagation en fatigue de fissures courtes dans un acier de construction navale,” Thesis Doctor, University of Metz, 2005.
  • [6] K. Alrubaie, E. Barroso, and L. Godefroid, “Fatigue crack growth analysis of pre-strained 7475–T7351 aluminum alloy,” Int. J. Fatigue, vol. 28, no. 8, pp. 934–942, Aug. 2006.
  • [7] J.-K. Kim and D.-S. Shim, “The variation in fatigue crack growth due to the thickness effect,” Int. J. Fatigue, vol. 22, pp. 611–618, 2000.
  • [8] J. R. Mohanty, B. B. Verma, and P. K. Ray, “Prediction of fatigue crack growth and residual life using an exponential model: Part I (constant amplitude loading),” Int. J. Fatigue, vol. 31, pp. 418–424, 2009.
  • [9] J. C. Newman, “The merging of fatigue and fracture mechanics concepts: a historical perspective,” Prog. Aerosp. Sci., vol. 34, no. 5–6, pp. 347–390, 1998.
  • [10] M. Vormwald, “Fatigue crack propagation under large cyclic plastic strain conditions,” Procedia Mater. Sci., vol. 3, pp. 301–306, 2014.
  • [11] P. Johansingh, C. Mukhopadhyay, T. Jayakumar, S. Mannan, and B. Raj, “Understanding fatigue crack propagation in AISI 316 (N) weld using Elber’s crack closure concept: Experimental results from GCMOD and acoustic emission techniques,” Int. J. Fatigue, vol. 29, no. 12, pp. 2170–2179, Dec. 2007.
  • [12] M. Vormwald, “Effect of cyclic plastic strain on fatigue crack growth,” Int. J. Fatigue, pp. 1–9, 2015.
  • [13] K. Prasad, V. Kumar, K. Bhanu Sankara Rao, and M. Sundararaman, “Effects of crack closure and cyclic deformation on thermomechanical fatigue crack growth of a Near α Titanium Alloy,” Metall. Mater. Trans. A, vol. 47A, no. 7, pp. 3713–3730, Jul. 2016.
  • [14] H. L. Ewalds, “The effect of environment on fatigue crack closure in Aluminium alloys,” Eng. Fract. Mechamics, vol. 13, pp. 1001–1006, 1980.
  • [15] J. R. Lloyd, “The effect of residual stress and crack closure on fatigue crack growth,” University of Wollongong Thesis Collection, 1999.
  • [16] L. Lawson, E. Y. Chen, and M. Meshii, “Near-threshold fatigue: a review,” Int. J. Fatigue, vol. 21, pp. 15–34, 1999.
  • [17] P. Pao, H. Jones, S. Cheng, and C. Feng, “Fatigue crack propagation in ultrafine grained Al–Mg alloy,” Int. J. Fatigue, vol. 27, no. 10–12, pp. 1164–1169, Oct. 2005.
  • [18] T. Hanlon, E. D. Tabachnikova, and S. Suresh, “Fatigue behavior of nanocrystalline metals and alloys,” Int. J. Fatigue, vol. 27, no. 10–12, pp. 1147–1158, 2005.
  • [19] K. Pandey and S. Chand, “An energy based fatigue crack growth model,” Int. J. Fatigue, vol. 25, no. 8, pp. 771–778, Aug. 2003.
  • [20] P. J. Huffman, “A strain energy based damage model for fatigue crack initiation and growth,” Int. J. Fatigue, vol. 88, pp. 197–204, 2016.
  • [21] N. W. Klingbeil, “A total dissipated energy theory of fatigue crack growth in ductile solids,” Int. J. Fatigue, vol. 25, pp. 117–128, 2003.
  • [22] S. C. Wu, Z. W. Xu, C. Yu, O. L. Kafka, and W. K. Liu, “A physically short fatigue crack growth approach based on low cycle fatigue properties,” Int. J. Fatigue, vol. 103, pp. 185–195, Oct. 2017.
  • [23] A. Noroozi, G. Glinka, and S. Lambert, “A two parameter driving force for fatigue crack growth analysis,” Int. J. Fatigue, vol. 27, no. 10–12, pp. 1277–1296, Oct. 2005.
  • [24] A. Noroozi, G. Glinka, and S. Lambert, “A study of the stress ratio effects on fatigue crack growth using the unified two-parameter fatigue crack growth driving force,” Int. J. Fatigue, vol. 29, no. 9–11, pp. 1616–1633, 2007.
  • [25] R. C. Dimitriu and H. K. D. H. Bhadeshia, “Fatigue crack growth rate model for metallic alloys,” Mater. Des., vol. 31, pp. 2134–2139, 2010.
  • [26] J. C. Radon, “A model for fatigue crack growth in a threshold region,” Int. J. Fatigue, vol. 4, no. 3, pp. 161–166, 1982.
  • [27] K. M. Lal and S. B. L. Garg, “A fatigue crack propagation model for strain hardening materials,” Eng. Fract. Mechamics, vol. 9, pp. 939–949, 1977.
  • [28] B. Tomkins, “Fatigue crack propagation – an analysis,” Phil Mag, vol. 18, no. 155, pp. 1041–1066, 1968.
  • [29] N. A. Fleck, K. J. Kang, and M. F. Ashby, “The cyclic properties of engineering materials,” Acta Metall. Materalia, vol. 42, pp. 365–381, 1994.
  • [30] K. K. Shi, L. X. Cai, S. Qi, and C. Bao, “Prediction of fatigue crack growth based on low cycle fatigue properties,” Eng. Fract. Mech., pp. 1–18, 2013.
  • [31] K. K. Shi, L. X. Cai, L. Chen, S. C. Wu, and C. Bao, “A prediction model for fatigue crack growth using effective cyclic plastic zone and low cycle fatigue properties,” Int. J. Fatigue, vol. 158, pp. 209–219, Apr. 2016.
  • [32] A. Tzamtzis and A. T. Kermanidis, “Fatigue crack growth prediction in 2xxx AA with friction stir weld HAZ properties,” Frat. ed Integrità Strutt., vol. 35, pp. 396–404, 2016.
  • [33] S. K. Paul and S. Tarafder, “Cyclic plastic deformation response at fatigue crack tips,” Int. J. Press. Vessel. Pip., vol. 101, pp. 81–90, 2013.
  • [34] F. V. Antunes, R. Branco, P. A. Prates, and L. Borrego, “Fatigue crack growth modelling based on CTOD for the 7050-T6 alloy,” Fatigue Fract. Eng. Mater. Struct., vol. 40, no. 8, pp. 1309–1320, Aug. 2017.
  • [35] B. Ould Chikh, A. Imad, and M. Benguediab, “Influence of the cyclic plastic zone size on the propagation of the fatigue crack in case of 12NC6 steel,” Comput. Mater. Sci., vol. 43, pp. 1010–1017, 2008.
  • [36] S. C. Forth, C. W. Wright, and W. M. Johnston, “7075-T6 and 2024-T351 aluminum alloy fatigue crack growth rate data,” NASA Cent. Aerosp. Inf., no. 213907, pp. 1–19, 2005.
  • [37] A. Tzamtzis and A. T. Kermanidis, “Improvement of fatigue crack growth resistance by controlled overaging in 2024-T3 aluminium alloy,” Fatigue Fract. Eng. Mater. Struct., vol. 0, pp. 1–13, 2014.
  • [38] A. Fatemi, A. Plaseied, A. K. Khosrovaneh, and D. Tanner, “Application of bilinear log-log S-N model to strain-controlled fatigue data of aluminum alloys and its effect on life predictions,” Int. J. Fatigue, vol. 27, pp. 1040–1050, 2005.
  • [39] S. Mikheevskiy, “Elastic-plastic fatigue crack growth analysis under variable amplitude loading spectra,” Thesis Doctor, University of Waterloo of Canada, 2009.
  • [40] J. T. P. Castro, Fatigue - Volume II - Propagation of cracks, thermal and stochastic effects. 2009.
  • [41] J. Colin, “Deformation history and load sequence effects on cumulative fatigue damage and life predictions,” Thesis Doctor, University of Toledo Digital Repository, 2010.
  • [42] A. Saoudi, “Prédiction de la rupture par fatigue dans les pièces automobiles en alliages aluminium,” Thesis Doctor, University of Quebec of Chicoutimi, 2008.
  • [43] A. H. Noroozi, G. Glinka, and S. Lambert, “Prediction of fatigue crack growth under constant amplitude loading and a single overload based on elasto-plastic crack tip stresses and strains,” Eng. Fract. Mech., vol. 75, no. 2, pp. 188–206, 2008.
  • [44] ASTM E 647-00, “Standard test method for measurement of fatigue crack growth rates,” ASTM Int., vol. 3, pp. 1–43, 2001.
  • [45] C. Jingjie, H. Yi, D. Leilei, and L. Yugang, “A new method for cyclic crack-tip plastic zone size determination under cyclic tensile load,” Eng. Fract. Mech., vol. 126, pp. 141–154, 2014.
  • [46] D. Chen, K. Shirato, M. W. Barsoum, T. El-Raghy, and R. O. Ritchie, “Cyclic fatigue-crack growth and fracture properties in Ti3SiC2 ceramics at elevated temperatures,” J. Am. Ceram. Soc., vol. 84, pp. 2914–2920, 2001.
  • [47] F. Khelil, B. Aour, M. Belhouari, and N. Benseddiq, “Modeling of fatigue crack propagation in aluminum alloys using an energy based approach,” Eng. Technol. Appl. Sci. Res., vol. 3, pp. 488–496, 2013.
  • [48] S. Ray and J. M. C. Kishen, “Energy based fatigue crack propagation model for plain concrete,” Fract. Mech. Concr. Concr. Struct., vol. 8, pp. 978–989, 2010.
  • [49] S. B. Chakrabortty, “A model relating low cycle fatigue properties and microstructure to fatigue crack propagation rates,” Fatigue Eng. Mater. Struct., vol. 2, pp. 331–344, 1979.
  • [50] J. Wasé and E. Heier, “Fatigue crack growth thresholds - the influence of Young’s modulus and fracture surface roughness,” Int. J. Fatigue, vol. 20, no. 10, pp. 737–742, 1998.
  • [51] S. Groh, S. Olarnrithinun, W. A. Curtin, A. Needleman, V. S. Deshpande, and E. Van der Giessen, “Fatigue crack growth from a cracked elastic p article into a ductile matrix,” Philos. Mag., vol. 88, no. 30–32, pp. 3565–3583, Oct. 2008.
  • [52] Y. Xiang, Z. Lu, and Y. Liu, “Crack growth-based fatigue life prediction using an equivalent initial flaw model. Part I: Uniaxial loading,” Int. J. Fatigue, vol. 32, no. 2, pp. 341–349, 2010.
  • [53] M. Ndiaye, S. Gaye, Z. Azari, and G. Pluvinage, “Propagation de fissures en fatigue par chocs,” J. des Sci., vol. 6, no. 1, pp. 22–29, 2006.
  • [54] B. Ould Chikh, J. M. N. A. Imad, and M. Benguediab, “Influence de la variabilité des paramètres de la relation de Paris sur la prédiction de la durée de vie en fatigue,” vol. 4, pp. 27–31, 2007.
  • [55] Z. Gao, W. Sun, Y. Wang, and F. Zhang, “Fatigue crack growth properties of typical pressure vessel steels at high temperature,” in 18th International Conference on Structural Mechanics in Reactor Technology, 2005, pp. 1754–1761.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.